当前位置: X-MOL 学术Theory Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Do cells use passwords in cell-state transitions? Is cell signaling sometimes encrypted?
Theory in Biosciences ( IF 1.1 ) Pub Date : 2019-06-07 , DOI: 10.1007/s12064-019-00295-1
Alex Root 1
Affiliation  

Organisms must maintain proper regulation including defense and healing. Life-threatening problems may be caused by pathogens or by a multicellular organism’s own cells through cancer or autoimmune disorders. Life evolved solutions to these problems that can be conceptualized through the lens of information security, which is a well-developed field in computer science. Here I argue that taking an information security view of cells is not merely semantics, but useful to explain features of signaling, regulation, and defense. An information security perspective also offers a conduit for cross-fertilization of advanced ideas from computer science and the potential for biology to inform computer science. First, I consider whether cells use passwords, i.e., initiation sequences that are required for subsequent signals to have effects, by analyzing the concept of pioneer transcription factors in chromatin regulation and cellular reprogramming. Second, I consider whether cells may encrypt signal transduction cascades. Encryption could benefit cells by making it more difficult for pathogens or oncogenes to hijack cell networks. By using numerous molecules, cells may gain a security advantage in particular against viruses, whose genome sizes are typically under selection pressure. I provide a simple conceptual argument for how cells may perform encryption through posttranslational modifications, complex formation, and chromatin accessibility. I invoke information theory to provide a criterion of an entropy spike to assess whether a signaling cascade has encryption-like features. I discuss how the frequently invoked concept of context dependency may oversimplify more advanced features of cell signaling networks, such as encryption. Therefore, by considering that biochemical networks may be even more complex than commonly realized we may be better able to understand defenses against pathogens and pathologies.

中文翻译:

单元格是否在单元格状态转换中使用密码?小区信令有时被加密吗?

有机体必须维持适当的法规,包括防御和康复。威胁生命的问题可能是由病原体或由多细胞生物自身的细胞通过癌症或自身免疫性疾病引起的。可以通过信息安全的角度来概念化解决这些问题的方法,这是计算机科学领域的一个发达领域。在这里,我认为,从信息安全的角度看待细胞不仅是语义,而且对于解释信号传递,调控和防御的特征也很有用。信息安全的观点还为交叉引用计算机科学中的高级思想以及生物学为计算机科学提供信息的潜力提供了渠道。首先,我考虑单元是否使用密码,即后续信号生效所需的启动顺序,通过分析染色质调节和细胞重编程中先驱转录因子的概念。其次,我考虑细胞是否可以加密信号转导级联。加密可使病原体或致癌基因更难劫持细胞网络,从而使细胞受益。通过使用大量分子,细胞可以获得安全优势,特别是针对病毒的安全性,病毒的基因组大小通常处于选择压力之下。对于细胞如何通过翻译后修饰,复杂的形成和染色质可及性进行加密,我提供了一个简单的概念性论证。我引用信息理论来提供熵尖峰的准则,以评估信令级联是否具有类似加密的功能。我讨论了上下文相关性的频繁调用概念如何过分简化了小区信令网络的高级功能,例如加密。因此,通过考虑生化网络可能比通常意识到的更为复杂,我们也许能够更好地理解针对病原体和病理的防御。
更新日期:2019-06-07
down
wechat
bug