当前位置: X-MOL 学术Front. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Feasibility of Encapsulated Embryonic Medullary Reticular Cells to Grow and Differentiate Into Neurons in Functionalized Gelatin-Based Hydrogels.
Frontiers in Materials ( IF 3.2 ) Pub Date : 2018-06-28 , DOI: 10.3389/fmats.2018.00040
Ana M Magariños 1 , Sara Pedron 2 , Marc Creixell 1 , Murat Kilinc 1 , Inna Tabansky 1 , Donald W Pfaff 1 , Brendan A C Harley 2, 3
Affiliation  

The study of the behavior of embryonic neurons in controlled in vitro conditions require methodologies that take advantage of advanced tissue engineering approaches to replicate elements of the developing brain extracellular matrix. We report here a series of experiments that explore the potential of photo-polymerized gelatin hydrogels to culture primary embryonic neurons. We employed large medullary reticular neurons whose activity is essential for brain arousal as well as a library of gelatin hydrogels that span a range of mechanical properties, inclusion of brain-mimetic hyaluronic acid, and adhesion peptides. These hydrogel platforms showed inherent capabilities to sustain neuronal viability and were permissive for neuronal differentiation, resulting in the development of neurite outgrowth under specific conditions. The maturation of embryonic medullary reticular cells took place in the absence of growth factors or other exogenous bioactive molecules. Immunocytochemistry labeling of neuron-specific tubulin confirmed the initiation of neural differentiation. Thus, this methodology provides an important validation for future studies of nerve cell growth and maintenance.

中文翻译:

封装的胚胎髓质网状细胞在功能化明胶基水凝胶中生长和分化为神经元的可行性。

在受控体外条件下研究胚胎神经元的行为需要利用先进的组织工程方法来复制发育中的大脑细胞外基质的元素。我们在此报告了一系列实验,探索光聚合明胶水凝胶培养原代胚胎神经元的潜力。我们采用了大型髓质网状神经元,其活动对于大脑唤醒至关重要,以及明胶水凝胶库,该库具有一系列机械特性,包含仿脑透明质酸和粘附肽。这些水凝胶平台显示出维持神经元活力的固有能力,并且允许神经元分化,从而导致在特定条件下神经突生长的发展。胚胎髓质网状细胞的成熟是在没有生长因子或其他外源生物活性分子的情况下发生的。神经元特异性微管蛋白的免疫细胞化学标记证实了神经分化的启动。因此,该方法为神经细胞生长和维持的未来研究提供了重要的验证。
更新日期:2019-11-01
down
wechat
bug