当前位置: X-MOL 学术Ann. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Embryonic Mesenchymal Multipotent Cell Differentiation on Electrospun Biodegradable Poly(ester amide) Scaffolds for Model Vascular Tissue Fabrication.
Annals of Biomedical Engineering ( IF 3.8 ) Pub Date : 2019-05-06 , DOI: 10.1007/s10439-019-02276-3
Sarah Kiros 1 , Shigang Lin 2 , Malcolm Xing 3 , Kibret Mequanint 1, 2
Affiliation  

Vascular differentiation of stem cells and matrix component production on electrospun tubular scaffolds is desirable to engineer blood vessels. The mouse embryonic multipotent mesenchymal progenitor cell line (10T1/2) provides an excellent tool for tissue engineering since it shares similar differentiation characteristics with mesenchymal stem cells. Although 10T1/2 cells have been widely studied in the context of skeletal tissue engineering, their differentiation to smooth muscle lineage is less known. In this study, we fabricated tubular electrospun poly(ester amide) (PEA) fibers from L-phenylalanine-derived biodegradable biomaterials and investigated cell-scaffold interactions as well as their differentiation into vascular smooth muscle cell and subsequent elastin expression. PEA scaffolds fabricated under different collector speeds did not have an impact on the fiber directionality/orientation. 10T1/2 cytocompatibility and proliferation studies showed that PEA fibres were not cytotoxic and were able to support proliferation for 14 days. Furthermore, cells were observed infiltrating the fibrous scaffolds despite the small pore sizes (~ 5 µm). Vascular differentiation studies of 10T1/2 cells using qPCR, Western blot, and immunostaining showed a TGFβ1-induced upregulation of vascular smooth muscle cell (VSMC)-specific markers smooth muscle alpha-actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). Differentiated 10T1/2 cells produced both elastin and fibrillin-1 suggesting the potential of fibrous PEA scaffolds to fabricate model vascular tissues.

中文翻译:

在静电纺丝可生物降解的聚(酯酰胺)支架上用于模型血管组织制造的胚胎间质多能细胞分化。

干细胞的血管分化和在电纺管状支架上基质成分的产生对于工程血管是理想的。小鼠胚胎多能间充质祖细胞系(10T1 / 2)为组织工程提供了极好的工具,因为它与间充质干细胞具有相似的分化特征。尽管10T1 / 2细胞已在骨骼组织工程中得到了广泛研究,但它们向平滑肌谱系的分化却鲜为人知。在这项研究中,我们从L-苯丙氨酸衍生的可生物降解的生物材料中制备了管状的电纺聚(酯酰胺)(PEA)纤维,并研究了细胞-支架相互作用以及它们分化为血管平滑肌细胞和随后的弹性蛋白表达。以不同收集器速度制造的PEA支架对纤维的方向性/取向没有影响。10T1 / 2细胞相容性和增殖研究表明,PEA纤维无细胞毒性,能够支持14天的增殖。此外,尽管孔径很小(〜5 µm),但仍观察到细胞浸入纤维支架。使用qPCR,Western印迹和免疫染色对10T1 / 2细胞进行的血管分化研究表明,TGFβ1诱导的血管平滑肌细胞(VSMC)特异性标志物平滑肌α-肌动蛋白(SM-α-actin)和平滑肌肌球蛋白重度上调链(SM-MHC)。分化的10T1 / 2细胞同时产生弹性蛋白和原纤维蛋白-1,表明纤维状PEA支架具有制造模型性血管组织的潜力。10T1 / 2细胞相容性和增殖研究表明,PEA纤维无细胞毒性,能够支持14天的增殖。此外,尽管孔径很小(〜5 µm),但仍观察到有细胞渗入纤维支架。使用qPCR,Western印迹和免疫染色对10T1 / 2细胞进行的血管分化研究表明,TGFβ1诱导的血管平滑肌细胞(VSMC)特异性标志物平滑肌α-肌动蛋白(SM-α-actin)和平滑肌肌球蛋白重度上调链(SM-MHC)。分化的10T1 / 2细胞同时产生弹性蛋白和原纤维蛋白-1,表明纤维状PEA支架具有制造模型性血管组织的潜力。10T1 / 2细胞相容性和增殖研究表明,PEA纤维无细胞毒性,能够支持14天的增殖。此外,尽管孔径很小(〜5 µm),但仍观察到有细胞渗入纤维支架。使用qPCR,Western印迹和免疫染色对10T1 / 2细胞进行的血管分化研究表明,TGFβ1诱导的血管平滑肌细胞(VSMC)特异性标志物平滑肌α-肌动蛋白(SM-α-actin)和平滑肌肌球蛋白重度上调链(SM-MHC)。分化的10T1 / 2细胞同时产生弹性蛋白和原纤维蛋白-1,表明纤维状PEA支架具有制造模型性血管组织的潜力。尽管孔径很小(〜5 µm),但仍观察到细胞浸润到纤维支架中。使用qPCR,Western印迹和免疫染色对10T1 / 2细胞进行的血管分化研究表明,TGFβ1诱导的血管平滑肌细胞(VSMC)特异性标志物平滑肌α-肌动蛋白(SM-α-actin)和平滑肌肌球蛋白重度上调链(SM-MHC)。分化的10T1 / 2细胞同时产生弹性蛋白和原纤维蛋白-1,表明纤维状PEA支架具有制造模型性血管组织的潜力。尽管孔径很小(〜5 µm),但仍观察到细胞浸润到纤维支架中。使用qPCR,Western印迹和免疫染色对10T1 / 2细胞进行的血管分化研究表明,TGFβ1诱导的血管平滑肌细胞(VSMC)特异性标志物平滑肌α-肌动蛋白(SM-α-actin)和平滑肌肌球蛋白重度上调链(SM-MHC)。分化的10T1 / 2细胞同时产生弹性蛋白和原纤维蛋白-1,表明纤维状PEA支架具有制造模型性血管组织的潜力。
更新日期:2020-02-12
down
wechat
bug