当前位置: X-MOL 学术Recent Pat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Magnesium-based Nanobiocomposite Processed by a Novel Technique Combining High Shear Solidification and Hot Extrusion.
Recent Patents on Nanotechnology ( IF 2 ) Pub Date : 2019-01-02 , DOI: 10.2174/1872210513666181231122808
Mehdi Razavi 1, 2 , Yan Huang 1
Affiliation  

BACKGROUND Most of the currently available Mg-based biomaterials corrode too fast in the physiological environment, causing many problems including hydrogen bubble release and premature mechanical failure. It is commonly recognized that high biodegradation rate is the major factor limiting their clinical applications. OBJECTIVE The present research aims to develop a new magnesium (Mg)-based biomaterial with a controlled biodegradation rate. METHODS A magnesium-hydroxyapatite (Mg-1.61Zn-0.18Mn-0.5Ca/1HA) nanocomposite was developed by a novel technique which combines high shear solidification and hot extrusion, followed by heat treatment. The microstructure and biodegradation rate of the nanocomposite in HBSS Hanks' Balanced Salt Solution were assessed. Biodegradation behaviour was studied using electrochemical corrosion and immersion test. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the surface microstructure, biodegradation morphology and to analyse the biodegradation products. Few patents were also cited in the article. RESULTS Under the optimized procedure of high shear solidification, extrusion and heat treatment at 400°C, the Mg-1.61Zn-0.18Mn-0.5Ca/1HA exhibited a satisfactory biodegradation rate of 0.12±0.04 mm/year. CONCLUSION This technology shows a potential of breakthrough innovation in the manufacturing of Mg-based biomaterials with a decreased biodegradation rate.

中文翻译:

通过结合高剪切固化和热挤压的新技术处理的镁基纳米生物复合材料。

背景技术当前大多数可用的基于镁的生物材料在生理环境中腐蚀太快,引起许多问题,包括氢气泡释放和过早的机械故障。众所周知,高生物降解率是限制其临床应用的主要因素。目的本研究旨在开发一种具有可控制的生物降解速率的新型镁(Mg)基生物材料。方法采用高剪切凝固与热挤压结合热处理的新技术,研制了一种镁-羟基磷灰石(Mg-1.61Zn-0.18Mn-0.5Ca / 1HA)纳米复合材料。评估了HBSS Hanks平衡盐溶液中纳米复合材料的微观结构和生物降解率。使用电化学腐蚀和浸没试验研究了生物降解行为。使用光学显微镜(OM),扫描电子显微镜(SEM)和能量分散光谱(EDS)表征表面微观结构,生物降解形态并分析生物降解产物。文章中也很少引用专利。结果在400℃高剪切凝固,挤压和热处理的优化程序下,Mg-1.61Zn-0.18Mn-0.5Ca / 1HA表现出令人满意的0.12±0.04 mm /年的生物降解率。结论该技术显示出在生物降解速率降低的镁基生物材料制造中突破性创新的潜力。文章中也很少引用专利。结果在400℃高剪切凝固,挤压和热处理的优化程序下,Mg-1.61Zn-0.18Mn-0.5Ca / 1HA表现出令人满意的0.12±0.04 mm /年的生物降解率。结论该技术显示出在生物降解速率降低的镁基生物材料制造中突破性创新的潜力。文章中也很少引用专利。结果在400℃高剪切凝固,挤压和热处理的优化程序下,Mg-1.61Zn-0.18Mn-0.5Ca / 1HA表现出令人满意的0.12±0.04 mm /年的生物降解率。结论该技术显示出在生物降解速率降低的镁基生物材料制造中突破性创新的潜力。
更新日期:2019-11-01
down
wechat
bug