当前位置: X-MOL 学术Biorheology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding endothelial glycocalyx function under flow shear stress from a molecular perspective.
Biorheology ( IF 1.1 ) Pub Date : 2019-01-01 , DOI: 10.3233/bir-180193
Xi Zhuo Jiang 1 , Yufang Lu 2 , Kai H Luo 1 , Yiannis Ventikos 1
Affiliation  

BACKGROUND The endothelial glycocalyx plays a pivotal role in regulating blood flow, filtering blood components, sensing and transducing mechanical signals. These functions are intimately related to its dynamics at the molecular level. OBJECTIVE The objective of this research is to establish the relationship between the functions of the endothelial glycocalyx and its dynamics at the molecular level. METHODS To establish such a relationship, large-scale molecular dynamics simulations were undertaken to mimic the dynamics of the glycocalyx and its components in the presence of flow shear stresses. RESULTS First, motions of the glycocalyx core protein and the pertinent subdomains were scrutinised. Three-directional movements of the glycocalyx core protein were observed, although the flow was imposed only in the x direction. Such an observation contributes to understanding the glycocalyx redistribution as reported in experiments. Unsynchronised motion of the core protein subdomains was also spotted, which provides an alternative explanation of macroscopic phenomena. Moreover, the dynamics, root-mean-square-deviations and conformational changes of the sugar chains were investigated. Based on the findings, an alternative force transmission pathway, the role of sugar chains, and potential influence on signalling transduction pathways were proposed and discussed. CONCLUSIONS This study relates the functions of the glycocalyx with its microscopic dynamics, which fills a knowledge gap about the links between different scales.

中文翻译:

从分子角度了解流动切应力作用下的内皮糖萼功能。

背景技术内皮糖萼在调节血流,过滤血液成分,感测和传导机械信号中起关键作用。这些功能与其在分子水平上的动力学密切相关。目的本研究的目的是在分子水平上建立内皮糖萼的功能与其动力学之间的关系。方法为了建立这种关系,进行了大规模的分子动力学模拟,以模拟流变剪切应力作用下糖萼及其成分的动力学。结果首先,研究了糖萼核心蛋白和相关亚结构域的运动。观察到了糖萼核心蛋白的三向运动,尽管仅在x方向施加了流动。这样的观察有助于理解实验中报道的糖萼的重新分布。还发现了核心蛋白亚结构域的不同步运动,这为宏观现象提供了另一种解释。此外,研究了糖链的动力学,均方根偏差和构象变化。基于这些发现,提出并讨论了另一种力传递途径,糖链的作用以及对信号转导途径的潜在影响。结论本研究将糖萼的功能与其微观动力学联系起来,填补了关于不同尺度之间联系的知识空白。还发现了核心蛋白亚结构域的不同步运动,这为宏观现象提供了另一种解释。此外,研究了糖链的动力学,均方根偏差和构象变化。基于这些发现,提出并讨论了另一种力传递途径,糖链的作用以及对信号转导途径的潜在影响。结论本研究将糖萼的功能与其微观动力学联系起来,填补了关于不同尺度之间联系的知识空白。还发现了核心蛋白亚结构域的不同步运动,这为宏观现象提供了另一种解释。此外,研究了糖链的动力学,均方根偏差和构象变化。基于这些发现,提出并讨论了另一种力传递途径,糖链的作用以及对信号转导途径的潜在影响。结论本研究将糖萼的功能与其微观动力学联系起来,填补了关于不同尺度之间联系的知识空白。糖链的作用,以及对信号转导途径的潜在影响已被提出和讨论。结论本研究将糖萼的功能与其微观动力学联系起来,填补了关于不同尺度之间联系的知识空白。糖链的作用,以及对信号转导途径的潜在影响已被提出和讨论。结论本研究将糖萼的功能与其微观动力学联系起来,填补了关于不同尺度之间联系的知识空白。
更新日期:2019-11-01
down
wechat
bug