当前位置: X-MOL 学术Food Energy Secur. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of a network describing asparagine metabolism in plants and its application to the identification of genes affecting asparagine metabolism in wheat under drought and nutritional stress.
Food and Energy Security ( IF 5 ) Pub Date : 2018-02-25 , DOI: 10.1002/fes3.126
Tanya Y Curtis 1 , Valeria Bo 2, 3 , Allan Tucker 2 , Nigel G Halford 1
Affiliation  

A detailed network describing asparagine metabolism in plants was constructed using published data from Arabidopsis (Arabidopsis thaliana) maize (Zea mays), wheat (Triticum aestivum), pea (Pisum sativum), soybean (Glycine max), lupin (Lupus albus), and other species, including animals. Asparagine synthesis and degradation is a major part of amino acid and nitrogen metabolism in plants. The complexity of its metabolism, including limiting and regulatory factors, was represented in a logical sequence in a pathway diagram built using yED graph editor software. The network was used with a Unique Network Identification Pipeline in the analysis of data from 18 publicly available transcriptomic data studies. This identified links between genes involved in asparagine metabolism in wheat roots under drought stress, wheat leaves under drought stress, and wheat leaves under conditions of sulfur and nitrogen deficiency. The network represents a powerful aid for interpreting the interactions not only between the genes in the pathway but also among enzymes, metabolites and smaller molecules. It provides a concise, clear understanding of the complexity of asparagine metabolism that could aid the interpretation of data relating to wider amino acid metabolism and other metabolic processes.

中文翻译:

描述植物中天冬酰胺代谢的网络的构建及其在鉴定干旱和营养胁迫下影响小麦天冬酰胺代谢的基因中的应用。

利用拟南芥(Arabidopsis thaliana)玉米(Zea mays),小麦(Triticum aestivum),豌豆(Pisum sativum),大豆(Glycine max),羽扇豆(Lupus albus)的已发表数据构建了描述植物中天冬酰胺代谢的详细网络。)和其他物种,包括动物。天冬酰胺的合成和降解是植物氨基酸和氮代谢的主要部分。使用yED图形编辑器软件构建的路径图中,逻辑上表示了其代谢的复杂性,包括限制因素和调节因素。该网络与“唯一网络标识管道”一起使用,用于分析来自18个公开转录组数据研究的数据。这确定了干旱胁迫下小麦根中天冬酰胺代谢相关基因,干旱胁迫下小麦叶和硫和氮缺乏条件下小麦叶片之间的联系。该网络代表了强大的帮助,不仅可以解释途径中的基因之间的相互作用,还可以解释酶,代谢物和较小分子之间的相互作用。
更新日期:2018-02-25
down
wechat
bug