当前位置: X-MOL 学术Prog. Photovoltaics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D-printed external light trap for solar cells.
Progress in Photovoltaics ( IF 6.7 ) Pub Date : 2015-11-26 , DOI: 10.1002/pip.2702
Lourens van Dijk 1 , Ulrich W Paetzold 2 , Gerhard A Blab 3 , Ruud E I Schropp 4 , Marcel di Vece 1
Affiliation  

We present a universally applicable 3D‐printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun‐facing surface of the solar cell and retro‐reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin‐film nanocrystalline silicon (nc‐Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver‐coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto‐electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.

中文翻译:

3D打印的太阳能电池外部光阱。

我们提出了一种通用的3D打印外部陷阱,以增强太阳能电池的吸收能力。宏观的外部光阱位于太阳能电池的朝阳表面,并向后反射否则会逸出的光。聚光器由放置在反射笼顶部的反射抛物面聚光器组成。放置光阱后,薄膜纳米晶硅(nc-Si:H)太阳能电池的光电流和功率转换效率提高了15%。捕获的光在反射罩中穿过太阳能电池几次,从而增加了电池中的总吸收量。因此,陷阱减少了光损耗并增强了整个光谱的吸收。光线收集器的组件均经过3D打印,并采用平滑处理,镀银热塑性塑料。与常规的光捕获方法相比,外部光捕获不影响太阳能电池的材料质量和电性能。为了解释外部光阱的理论操作,我们引入了一个模型,该模型预测外部光阱在太阳能电池中的吸收增强。相应的计算出的路径长度增强与从太阳能电池的光电数据根据经验得出的值显示出良好的一致性。此外,我们分析了入射角对寄生吸收率的影响,以全面了解陷阱性能。©2015作者。外部光捕获不会影响太阳能电池的材料质量和电性能。为了解释外部光阱的理论操作,我们引入了一个模型,该模型预测外部光阱在太阳能电池中的吸收增强。相应的计算出的路径长度增强与从太阳能电池的光电数据根据经验得出的值显示出良好的一致性。此外,我们分析了入射角对寄生吸收率的影响,以全面了解陷阱性能。©2015作者。外部光捕获不会影响太阳能电池的材料质量和电性能。为了解释外部光阱的理论操作,我们引入了一个模型,该模型预测外部光阱在太阳能电池中的吸收增强。相应的计算出的路径长度增强与从太阳能电池的光电数据根据经验得出的值显示出良好的一致性。此外,我们分析了入射角对寄生吸收率的影响,以全面了解陷阱性能。©2015作者。相应的计算出的路径长度增强与从太阳能电池的光电数据根据经验得出的值显示出良好的一致性。此外,我们分析了入射角对寄生吸收率的影响,以全面了解陷阱性能。©2015作者。相应的计算出的路径长度增强与从太阳能电池的光电数据根据经验得出的值显示出良好的一致性。此外,我们分析了入射角对寄生吸收率的影响,以全面了解陷阱性能。©2015作者。光伏技术的进展:研究与应用,John Wiley&Sons,Ltd.出版。
更新日期:2015-11-26
down
wechat
bug