当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Convex recovery of continuous domain piecewise constant images from nonuniform Fourier samples.
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2018-08-25 , DOI: 10.1109/tsp.2017.2750111
Greg Ongie,Sampurna Biswas,Mathews Jacob

We consider the recovery of a continuous domain piecewise constant image from its non-uniform Fourier samples using a convex matrix completion algorithm. We assume the discontinuities/edges of the image are localized to the zero level-set of a bandlimited function. This assumption induces linear dependencies between the Fourier coefficients of the image, which results in a two-fold block Toeplitz matrix constructed from the Fourier coefficients being low-rank. The proposed algorithm reformulates the recovery of the unknown Fourier coefficients as a structured low-rank matrix completion problem, where the nuclear norm of the matrix is minimized subject to structure and data constraints. We show that exact recovery is possible with high probability when the edge set of the image satisfies an incoherency property. We also show that the incoherency property is dependent on the geometry of the edge set curve, implying higher sampling burden for smaller curves. This paper generalizes recent work on the super-resolution recovery of isolated Diracs or signals with finite rate of innovation to the recovery of piecewise constant images.
更新日期:2019-11-01

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug