当前位置: X-MOL 学术Protein Eng. Des. Sel. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineered cysteine antibodies: an improved antibody-drug conjugate platform with a novel mechanism of drug-linker stability.
Protein Engineering, Design and Selection ( IF 2.4 ) Pub Date : 2018-01-26 , DOI: 10.1093/protein/gzx067
D Sussman 1 , L Westendorf 1 , D W Meyer 1 , C I Leiske 1 , M Anderson 1 , N M Okeley 1 , S C Alley 1 , R Lyon 1 , R J Sanderson 1 , P J Carter 2 , D R Benjamin 1
Affiliation  

Antibody-drug conjugates (ADCs) are fulfilling the promise of targeted therapy with meaningful clinical success. An intense research effort is directed towards improving pharmacokinetic profiles, toxicity and chemical stability of ADCs. The majority of ADCs use amide and thioether chemistry to link potent cytotoxic agents to antibodies via endogenous lysine and cysteine residues. While maleimide-cysteine conjugation is used for many clinical stage ADC programs, maleimides have been shown to exhibit some degree of post-conjugation instability. Previous research with site-directed mutagenic incorporation of cysteine residues for conjugation revealed that the stability of the drug-antibody linkage depends on the site of conjugation. Here we report on a collection of engineered cysteine antibodies (S239C, E269C, K326C and A327C) that can be site-specifically conjugated to potent cytotoxic agents to produce homogenous 2-loaded ADCs. These ADCs confirm that site of conjugation impacts maleimide stability and present a novel mechanism of thioether stabilization, effectively unlinking stability from either local chemical environment or calculated solvent accessibility and expanding the current paradigm for ADC drug-linker stability. These ADCs show potent in vitro and in vivo activity while delivering half of the molar equivalent dose of drug per antibody when compared to an average 4-loaded ADC. In addition, our lead engineered site shields highly hydrophobic drugs, enabling conjugation, formulation and clinical use of otherwise intractable chemotypes.

中文翻译:

工程化的半胱氨酸抗体:具有药物连接子稳定性新机制的改良抗体-药物偶联平台。

抗体-药物偶联物(ADC)正在实现靶向治疗的希望,并具有有意义的临床成功。大量研究工作致力于改善ADC的药代动力学,毒性和化学稳定性。大多数ADC使用酰胺和硫醚化学方法将有效的细胞毒性剂通过内源性赖氨酸和半胱氨酸残基连接到抗体。虽然马来酰亚胺-半胱氨酸结合用于许多临床阶段ADC程序,但已证明马来酰亚胺表现出一定程度的结合后不稳定性。以前对半胱氨酸残基进行定点诱变掺入以进行缀合的研究表明,药物-抗体连接的稳定性取决于缀合的位点。在这里,我们报告了一组工程化的半胱氨酸抗体(S239C,E269C,(K326C和A327C)可以位点特异性地与有效的细胞毒剂偶联以产生均质的2负载ADC。这些ADC证实了共轭位点会影响马来酰亚胺的稳定性,并呈现出硫醚稳定的新机制,可有效地将稳定性与当地化学环境或计算得出的溶剂可及性脱钩,并扩展了ADC药物-接头稳定性的当前范例。与平均装载4个ADC相比,这些ADC表现出强大的体外和体内活性,同时每抗体可提供一半的药物摩尔当量剂量的抗体。此外,我们的领先工程位点可屏蔽高度疏水的药物,从而可以进行原本难以治疗的化学型的缀合,配制和临床使用。这些ADC证实了共轭位点会影响马来酰亚胺的稳定性,并呈现出硫醚稳定的新机制,可有效地将稳定性与当地化学环境或计算得出的溶剂可及性脱钩,并扩展了ADC药物-接头稳定性的当前范例。与平均装载4个ADC相比,这些ADC表现出强大的体外和体内活性,同时每抗体可提供一半的药物摩尔当量剂量的抗体。此外,我们的领先工程位点可屏蔽高度疏水的药物,从而可以进行原本难以治疗的化学型的缀合,配制和临床使用。这些ADC证实了共轭位点会影响马来酰亚胺的稳定性,并呈现出硫醚稳定的新机制,可有效地将稳定性与当地化学环境或计算得出的溶剂可及性脱钩,并扩展了ADC药物-接头稳定性的当前范例。与平均装载4个ADC相比,这些ADC表现出强大的体外和体内活性,同时每抗体可提供一半的药物摩尔当量剂量的抗体。此外,我们的领先工程位点可屏蔽高度疏水的药物,从而可以进行原本难以治疗的化学型的缀合,配制和临床使用。有效地解除了与当地化学环境或计算得出的溶剂可及性之间的联系,并扩展了ADC药物-连接子稳定性的现有范例。与平均装载4个ADC相比,这些ADC表现出强大的体外和体内活性,同时每抗体可提供一半的药物摩尔当量剂量的抗体。此外,我们的领先工程位点可屏蔽高度疏水的药物,从而可以进行原本难以治疗的化学型的缀合,配制和临床使用。有效地解除了与当地化学环境或计算得出的溶剂可及性之间的联系,并扩展了ADC药物-连接子稳定性的现有范例。与平均装载4个ADC相比,这些ADC表现出强大的体外和体内活性,同时每抗体可提供一半的药物摩尔当量剂量的抗体。此外,我们的领先工程位点可屏蔽高度疏水的药物,从而可以进行原本难以治疗的化学型的缀合,配制和临床使用。
更新日期:2019-11-01
down
wechat
bug