当前位置: X-MOL 学术Annu. Rev. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temporal dynamics of brain anatomy.
Annual Review of Biomedical Engineering ( IF 9.7 ) Pub Date : 2003-10-07 , DOI: 10.1146/annurev.bioeng.5.040202.121611
Arthur W Toga 1 , Paul M Thompson
Affiliation  

The brain changes profoundly in structure and function during development and as a result of diseases such as the dementias, schizophrenia, multiple sclerosis, and tumor growth. Strategies to measure, map, and visualize these brain changes are of immense value in basic and clinical neuroscience. Algorithms that map brain change with sufficient spatial and temporal sensitivity can also assess drugs that aim to decelerate or arrest these changes. In neuroscience studies, these tools can reveal subtle brain changes in adolescence and old age and link these changes with measurable differences in brain function and cognition. Early detection of brain change in patients at risk for dementia; tumor recurrence; or relapsing-remitting conditions, such as multiple sclerosis, is also vital for optimizing therapy. We review a variety of mathematical and computational approaches to detect structural brain change with unprecedented sensitivity, both spatially and temporally. The resulting four-dimensional (4-D) maps of brain anatomy are warehoused in population-based brain atlases. Here, statistical tools compare brain changes across subjects and across populations, adjusting for complex differences in brain structure. Brain changes in an individual can be compared with a normative database comprised of subjects matched for age, gender, and other demographic factors. These dynamic brain maps offer key biological markers for understanding disease progression and testing therapeutic response. The early detection of disease-related brain changes is also critical for possible pre-emptive intervention before the ravages of disease have set in.

中文翻译:

脑解剖的时间动态。

在发育过程中,由于痴呆症,精神分裂症,多发性硬化症和肿瘤生长等疾病,大脑的结构和功能发生了深刻的变化。测量,绘制和可视化这些大脑变化的策略在基础和临床神经科学中具有巨大价值。以足够的空间和时间敏感性映射大脑变化的算法还可以评估旨在减速或阻止这些变化的药物。在神经科学研究中,这些工具可以揭示青春期和老年期的细微大脑变化,并将这些变化与大脑功能和认知的可测量差异联系起来。早期发现患有痴呆症风险的患者的脑部变化;肿瘤复发;或缓解复发的疾病(例如多发性硬化症)对于优化治疗也至关重要。我们回顾了各种数学和计算方法,以前所未有的灵敏度在空间和时间上检测结构性大脑变化。生成的大脑解剖结构的四维(4-D)图存储在基于人群的脑图集中。在这里,统计工具可以比较受试者和人群之间的大脑变化,以适应大脑结构的复杂差异。可以将个人的大脑变化与由年龄,性别和其他人口统计学因素匹配的受试者组成的规范数据库进行比较。这些动态的大脑图谱为理解疾病进展和测试治疗反应提供了关键的生物学标记。在疾病肆虐之前,尽早发现与疾病相关的大脑变化对于可能的先发性干预也至关重要。
更新日期:2019-11-01
down
wechat
bug