当前位置: X-MOL 学术Annu. Rev. Cell Dev. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Following the chromosome path to the garden of the genome.
Annual Review of Cell and Developmental Biology ( IF 11.3 ) Pub Date : 2007-05-18 , DOI: 10.1146/annurev.cellbio.23.090506.123459
Mary-Lou Pardue 1
Affiliation  

I have been fascinated by chromosomes for longer than I care to mention; their beautiful structure, cell-type-specific changes in morphology, and elegant movements delight me. Shortly before I began graduate study, the development of nucleic acid hybridization made it possible to compare two nucleic acids whether or not their sequences were known. From this stemmed a progression of development in tools and techniques that continues to enhance our understanding of how chromosomes function. As my PhD project I contributed to this progression by developing in situ hybridization, a technique for hybridization to nucleic acids within their cellular context. Early studies with this technique initiated several lines of research, two of which I describe here, that I have pursued to this day. First, analysis of RNA populations by hybridization to polytene chromosomes (a proto-microarray-type experiment) led us to characterize levels of regulation during heat shock beyond those recognizable by puffing studies. We found also that one still-undeciphered major heat shock puff encodes a novel set of RNAs for which we propose a regulatory role. Second, localization of various multicopy DNA sequences has suggested roles for them in chromosome structure: Most recently we have found that Drosophila telomeres consist of and are maintained by special non-LTR (long terminal repeat) retrotransposons.

中文翻译:

沿着染色体路径到达基因组的花园。

我对染色体着迷的时间比我想提的要长。它们漂亮的结构,特定于细胞类型的形态变化以及优雅的动作使我感到高兴。在我开始进行研究生研究之前不久,核酸杂交的发展使得可以比较两个核酸,无论它们的序列是否已知。由此产生了工具和技术发展的进步,这种进步不断加深我们对染色体功能的理解。在我的博士项目中,我通过开发原位杂交技术为这种进展做出了贡献,原位杂交技术是在其细胞内与核酸杂交的技术。迄今为止,使用这种技术的早期研究引发了几项研究,直到今天,我在这里描述了其中的两项。第一,通过与多聚体染色体杂交对RNA种群的分析(原微阵列类型的实验)使我们能够表征热休克期间调节的水平,超出了膨化研究所能识别的水平。我们还发现,一个仍未破译的主要热休克泡芙编码了一组新的RNA,我们提出了其调控作用。第二,各种多拷贝DNA序列的定位提示它们在染色体结构中的作用:最近,我们发现果蝇端粒由特殊的非LTR(长末端重复)逆转录转座子组成并由其维持。我们还发现,一个仍未破译的主要热休克泡芙编码了一组新的RNA,我们提出了其调控作用。第二,各种多拷贝DNA序列的定位提示它们在染色体结构中的作用:最近,我们发现果蝇端粒由特殊的非LTR(长末端重复)逆转录转座子组成并由其维持。我们还发现,一个仍未破译的主要热休克泡芙编码了一组新的RNA,我们提出了其调控作用。第二,各种多拷贝DNA序列的定位提示它们在染色体结构中的作用:最近,我们发现果蝇端粒由特殊的非LTR(长末端重复)逆转录转座子组成并由其维持。
更新日期:2019-11-01
down
wechat
bug