当前位置: X-MOL 学术Geobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low temperature S(0) biomineralization at a supraglacial spring system in the Canadian High Arctic.
Geobiology ( IF 3.7 ) Pub Date : 2011-05-19 , DOI: 10.1111/j.1472-4669.2011.00283.x
D F Gleeson 1 , C Williamson , S E Grasby , R T Pappalardo , J R Spear , A S Templeton
Affiliation  

Elemental sulfur (S0) is deposited each summer onto surface ice at Borup Fiord pass on Ellesmere Island, Canada, when high concentrations of aqueous H2S are discharged from a supraglacial spring system. 16S rRNA gene clone libraries generated from sulfur deposits were dominated by β‐Proteobacteria, particularly Ralstonia sp. Sulfur‐cycling micro‐organisms such as Thiomicrospira sp., and εProteobacteria such as Sulfuricurvales and Sulfurovumales spp. were also abundant. Concurrent cultivation experiments isolated psychrophilic, sulfide‐oxidizing consortia, which produce S0 in opposing gradients of Na2S and oxygen. 16S rRNA gene analyses of sulfur precipitated in gradient tubes show stable sulfur‐biomineralizing consortia dominated by Marinobacter sp. in association with Shewanella, Loktanella, Rubrobacter, Flavobacterium, and Sphingomonas spp. Organisms closely related to cultivars appear in environmental 16S rRNA clone libraries; none currently known to oxidize sulfide. Once consortia were simplified to Marinobacter and Flavobacteria spp. through dilution‐to‐extinction and agar removal, sulfur biomineralization continued. Shewanella, Loktanella, Sphingomonas, and Devosia spp. were also isolated on heterotrophic media, but none produced S0 alone when reintroduced to Na2S gradient tubes. Tubes inoculated with a Marinobacter and Shewanella spp. co‐culture did show sulfur biomineralization, suggesting that Marinobacter may be the key sulfide oxidizer in laboratory experiments. Light, florescence and scanning electron microscopy of mineral aggregates produced in Marinobacter experiments revealed abundant cells, with filaments and sheaths variably mineralized with extracellular submicron sulfur grains; similar biomineralization was not observed in abiotic controls. Detailed characterization of mineral products associated with low temperature microbial sulfur‐cycling may provide biosignatures relevant to future exploration of Europa and Mars.

中文翻译:

在加拿大高北极地区的超冰川春季系统中,低温S(0)生物矿化作用。

每年夏天,当从冰川期泉水系统中排出高浓度的H 2 S时,元素硫(S 0)就会沉积在加拿大Ellesmere岛的Borup Fiord通道上的地表冰上。由硫沉积物产生的16S rRNA基因克隆文库主要由β-变形杆菌,特别是Ralstonia sp。硫循环微生物如硫微螺菌属SP,和ε。-变形菌如SulfuricurvalesSulfurovumales属。也很丰富。并行培养实验分离了耐高温,硫化物氧化的聚生体,该聚生体以相反的Na 2梯度产生S 0S和氧气。梯度管中沉淀的硫的16S rRNA基因分析表明,稳定的硫生物矿化财团主要由Marinobacter sp。主导。与ShewanellaLoktanellaRubrobacterFlavobacteriumSphingomonas spp结合。与品种密切相关的有机体出现在环境16S rRNA克隆文库中。目前尚无氧化硫化物的方法。一旦将财团简化为MarinobacterFlavobacteria spp。通过稀释至灭绝和琼脂去除,硫生物矿化继续进行。希瓦氏菌Loktanella鞘氨醇单胞菌Devosia spp。在异养培养基上也分离出了SnO,但是当再引入Na 2 S梯度管中时,没有一个单独产生S 0。试管接种了Marinobacter和Shewanella spp。共培养确实显示出硫的生物矿化作用,这表明Marinobacter可能是实验室实验中的关键硫化物氧化剂。马氏杆菌产生的矿物质的光,荧光和扫描电镜实验表明细胞丰富,细丝和鞘被细胞外亚微米硫颗粒矿化。在非生物对照中未观察到类似的生物矿化作用。与低温微生物硫循环有关的矿物产品的详细表征可能提供与欧罗巴和火星的未来勘探有关的生物特征。
更新日期:2011-05-19
down
wechat
bug