当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A spectral finite element approach to modeling soft solids excited with high-frequency harmonic loads
Computer Methods in Applied Mechanics and Engineering ( IF 7.2 ) Pub Date : 2011-01-01 , DOI: 10.1016/j.cma.2010.09.015
John C Brigham 1 , Wilkins Aquino , Miguel A Aguilo , Peter J Diamessis
Affiliation  

An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number.

中文翻译:

一种模拟高频谐波载荷激励软固体的谱有限元方法

提出并评估了一种使用高阶谱有限元对简谐激励软固体进行有效和准确有限元分析的方法。当激励频率相对于刚度(即高波数)变得高时,用于对此类系统建模的亥姆霍兹型方程会遭受称为污染的额外数值误差,例如,对于受到超声激励的软组织而言,就是这种情况。使用高阶多项式元素可以减少这种污染误差,但需要额外考虑以抵消龙格现象和/或不良的线性系统调节,这导致使用频谱元素方法。这项工作详细检查了高阶光谱元素对此类问题的计算优势和实际适用性。检查的光谱元素是具有非均匀分布的 Gauss-Lobatto-Legendre 节点的高阶拉格朗日多项式的张量积元素(即四边形或砖形元素)。提供了一个剪切平面波示例,以显示高阶单元的精度和计算费用对波数的依赖性。然后,展示了实际超声驱动振动声实验的粘弹性声-结构相互作用有限元模型的收敛研究。发现给定精度水平所需的自由度数随着单元阶数的增加而不断减少。然而,发现计算上最优的单元阶次强烈依赖于波数。四边形或砖块元素)具有非均匀分布的 Gauss-Lobatto-Legendre 节点的高阶拉格朗日多项式。提供了一个剪切平面波示例,以显示高阶单元的精度和计算费用对波数的依赖性。然后,展示了实际超声驱动振动声实验的粘弹性声-结构相互作用有限元模型的收敛研究。发现给定精度水平所需的自由度数随着单元阶数的增加而不断减少。然而,发现计算上最优的单元阶次强烈依赖于波数。四边形或砖块元素)具有非均匀分布的 Gauss-Lobatto-Legendre 节点的高阶拉格朗日多项式。提供了一个剪切平面波示例,以显示高阶单元的精度和计算费用对波数的依赖性。然后,展示了实际超声驱动振动声实验的粘弹性声-结构相互作用有限元模型的收敛研究。发现给定精度水平所需的自由度数随着单元阶数的增加而不断减少。然而,发现计算上最优的单元阶次强烈依赖于波数。提供了一个剪切平面波示例,以显示高阶单元的精度和计算费用对波数的依赖性。然后,展示了实际超声驱动振动声实验的粘弹性声-结构相互作用有限元模型的收敛研究。发现给定精度水平所需的自由度数随着单元阶数的增加而不断减少。然而,发现计算上最优的单元阶次强烈依赖于波数。提供了一个剪切平面波示例,以显示高阶单元的精度和计算费用对波数的依赖性。然后,展示了实际超声驱动振动声实验的粘弹性声-结构相互作用有限元模型的收敛研究。发现给定精度水平所需的自由度数随着单元阶数的增加而不断减少。然而,发现计算上最优的单元阶次强烈依赖于波数。
更新日期:2011-01-01
down
wechat
bug