当前位置: X-MOL 学术J. Microelectromech. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer
Journal of Microelectromechanical Systems ( IF 2.7 ) Pub Date : 2010-12-01 , DOI: 10.1109/jmems.2010.2076786
Der-Song Lin 1 , Xuefeng Zhuang , Serena H Wong , Mario Kupnik , Butrus Thomas Khuri-Yakub
Affiliation  

The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs.

中文翻译:

使用粘弹性聚合物封装电容微机械超声换能器

医学成像或治疗超声换能器的包装应在保持高性能的同时提供保护性绝缘。对于电容式微机械超声换能器 (CMUT),理想的封装涂层因此需要在静态工作点和动态性能上进行有限且可预测的变化,同时将高直流和直流驱动电压与环境隔离。为了满足这些要求,研究了用于封装材料的粘弹性材料,例如聚二甲基硅氧烷 (PDMS)。此外,PDMS 的玻璃化转变温度低于室温,可提供低杨氏模量,从而保持静态行为;在超声波操作的更高频率下,这种材料变得更硬,并且在声学上与水相匹配。在本文中,我们展示了粘弹性聚合物作为封装材料的建模和实现。我们引入了一个解决粘弹性问题的有限元模型 (FEM)。这使我们能够正确计算 CMUT 的静态操作点和动态行为。为医学成像和治疗性超声设计的 CMUT 被制造和封装。静态和动态测量用于验证 FEM 并显示出极好的一致性。本文将有助于优化粘弹性聚合物涂层 CMUT 的静态和动态行为的设计过程。这使我们能够正确计算 CMUT 的静态操作点和动态行为。为医学成像和治疗性超声设计的 CMUT 被制造和封装。静态和动态测量用于验证 FEM 并显示出极好的一致性。本文将有助于优化粘弹性聚合物涂层 CMUT 的静态和动态行为的设计过程。这使我们能够正确计算 CMUT 的静态操作点和动态行为。为医学成像和治疗性超声设计的 CMUT 被制造和封装。静态和动态测量用于验证 FEM 并显示出极好的一致性。本文将有助于优化粘弹性聚合物涂层 CMUT 的静态和动态行为的设计过程。
更新日期:2010-12-01
down
wechat
bug