当前位置: X-MOL 学术GCB Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enzymatic deconstruction of xylan for biofuel production.
Global Change Biology Bioenergy ( IF 5.6 ) Pub Date : 2009-02-18 , DOI: 10.1111/j.1757-1707.2009.01004.x
Dylan Dodd 1 , Isaac K O Cann
Affiliation  

The combustion of fossil‐derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction.

中文翻译:

用于生物燃料生产的木聚糖的酶促解构。

化石燃料的燃烧对大气中的二氧化碳 (CO 2 ) 水平有重大影响,因此是人为全球气候变化的重要因素。植物已经进化出光合作用机制,其中太阳能用于固定 CO 2变成碳水化合物。因此,源自植物生物质的生物燃料的燃烧可以被认为是潜在的碳中和过程。将植物生物质有效转化为生物燃料的主要限制之一是植物细胞壁的顽固性质,其主要由木质纤维素材料(木质素、纤维素和半纤维素)组成。杂聚木聚糖代表最丰富的半纤维素多糖,主要由木糖、阿拉伯糖和葡萄糖醛酸组成。微生物已经进化出大量的酶促策略,用于将木聚糖水解成其组成糖,随后发酵成生物燃料。因此,微生物被认为是新兴生物燃料工业中生物催化剂的重要来源。为了生产用于木聚糖解构的优化酶混合物,深入了解化学键的分子水平以及这些酶识别其底物并催化其反应的机制将是有价值的。基因组学、蛋白质组学和结构生物学的最新进展彻底改变了我们对微生物木聚糖分解酶的理解。本综述侧重于目前对底物特异性和参与木聚糖解构的酶的催化作用的分子基础的理解。
更新日期:2009-02-18
down
wechat
bug