当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations
Computer Methods in Applied Mechanics and Engineering ( IF 7.2 ) Pub Date : 2013-04-01 , DOI: 10.1016/j.cma.2012.12.013
Sethuraman Sankaran 1 , Jay D Humphrey , Alison L Marsden
Affiliation  

Computational models for vascular growth and remodeling (G&R) are used to predict the long-term response of vessels to changes in pressure, flow, and other mechanical loading conditions. Accurate predictions of these responses are essential for understanding numerous disease processes. Such models require reliable inputs of numerous parameters, including material properties and growth rates, which are often experimentally derived, and inherently uncertain. While earlier methods have used a brute force approach, systematic uncertainty quantification in G&R models promises to provide much better information. In this work, we introduce an efficient framework for uncertainty quantification and optimal parameter selection, and illustrate it via several examples. First, an adaptive sparse grid stochastic collocation scheme is implemented in an established G&R solver to quantify parameter sensitivities, and near-linear scaling with the number of parameters is demonstrated. This non-intrusive and parallelizable algorithm is compared with standard sampling algorithms such as Monte-Carlo. Second, we determine optimal arterial wall material properties by applying robust optimization. We couple the G&R simulator with an adaptive sparse grid collocation approach and a derivative-free optimization algorithm. We show that an artery can achieve optimal homeostatic conditions over a range of alterations in pressure and flow; robustness of the solution is enforced by including uncertainty in loading conditions in the objective function. We then show that homeostatic intramural and wall shear stress is maintained for a wide range of material properties, though the time it takes to achieve this state varies. We also show that the intramural stress is robust and lies within 5% of its mean value for realistic variability of the material parameters. We observe that prestretch of elastin and collagen are most critical to maintaining homeostasis, while values of the material properties are most critical in determining response time. Finally, we outline several challenges to the G&R community for future work. We suggest that these tools provide the first systematic and efficient framework to quantify uncertainties and optimally identify G&R model parameters.

中文翻译:

动脉生长和重塑计算中优化和参数敏感性分析的有效框架

血管生长和重塑 (G&R) 的计算模型用于预测血管对压力、流量和其他机械负载条件变化的长期响应。准确预测这些反应对于了解许多疾病过程至关重要。此类模型需要可靠输入大量参数,包括材料特性和生长速率,这些参数通常是通过实验得出的,并且本质上是不确定的。虽然早期的方法使用了蛮力方法,但 G&R 模型中的系统不确定性量化有望提供更好的信息。在这项工作中,我们引入了一个用于不确定性量化和最优参数选择的有效框架,并通过几个例子进行了说明。第一的,在已建立的 G&R 求解器中实施了自适应稀疏网格随机搭配方案,以量化参数敏感性,并展示了参数数量的近线性缩放。这种非侵入性和可并行化的算法与标准采样算法(如蒙特卡罗)进行了比较。其次,我们通过应用稳健优化来确定最佳动脉壁材料特性。我们将 G&R 模拟器与自适应稀疏网格搭配方法和无导数优化算法相结合。我们表明,动脉可以在压力和流量的一系列变化中达到最佳的稳态;解决方案的鲁棒性是通过在目标函数中包含加载条件的不确定性来实现的。然后,我们表明,尽管达到这种状态所需的时间各不相同,但在各种材料特性下,稳态的壁内和壁面剪应力都保持不变。我们还表明壁内应力是稳健的,对于材料参数的实际可变性,其平均值在 5% 以内。我们观察到弹性蛋白和胶原蛋白的预拉伸对于维持体内平衡最关键,而材料特性的值对于确定响应时间最关键。最后,我们概述了 G&R 社区未来工作面临的几个挑战。我们建议这些工具提供第一个系统和有效的框架来量化不确定性并最佳地识别 G&R 模型参数。我们还表明壁内应力是稳健的,对于材料参数的实际可变性,其平均值在 5% 以内。我们观察到弹性蛋白和胶原蛋白的预拉伸对于维持体内平衡最关键,而材料特性的值对于确定响应时间最关键。最后,我们概述了 G&R 社区未来工作面临的几个挑战。我们建议这些工具提供第一个系统和有效的框架来量化不确定性并最佳地识别 G&R 模型参数。我们还表明壁内应力是稳健的,对于材料参数的实际可变性,其平均值在 5% 以内。我们观察到弹性蛋白和胶原蛋白的预拉伸对于维持体内平衡最关键,而材料特性的值对于确定响应时间最关键。最后,我们概述了 G&R 社区未来工作面临的几个挑战。我们建议这些工具提供第一个系统和有效的框架来量化不确定性并最佳地识别 G&R 模型参数。最后,我们概述了 G&R 社区未来工作面临的几个挑战。我们建议这些工具提供第一个系统和有效的框架来量化不确定性并最佳地识别 G&R 模型参数。最后,我们概述了 G&R 社区未来工作面临的几个挑战。我们建议这些工具提供第一个系统和有效的框架来量化不确定性并最佳地识别 G&R 模型参数。
更新日期:2013-04-01
down
wechat
bug