当前位置: X-MOL 学术IEEE Trans. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays
IEEE Transactions on Nanotechnology ( IF 2.4 ) Pub Date : 2010-05-01 , DOI: 10.1109/tnano.2009.2031807
Brian P Timko 1 , Tzahi Cohen-Karni , Quan Qing , Bozhi Tian , Charles M Lieber
Affiliation  

Nanowire FETs (NWFETs) are promising building blocks for nanoscale bioelectronic interfaces with cells and tissue since they are known to exhibit exquisite sensitivity in the context of chemical and biological detection, and have the potential to form strongly coupled interfaces with cell membranes. We present a general scheme that can be used to assemble NWs with rationally designed composition and geometry on either planar inorganic or biocompatible flexible plastic surfaces. We demonstrate that these devices can be used to measure signals from neurons, cardiomyocytes, and heart tissue. Reported signals are in millivolts range, which are equal to or substantially greater than those recorded with either planar FETs or multielectrode arrays, and demonstrate one unique advantage of NW-based devices. Basic studies showing the effect of device sensitivity and cell/substrate junction quality on signal magnitude are presented. Finally, our demonstrated ability to design high-density arrays of NWFETs enables us to map signal at the subcellular level, a functionality not enabled by conventional microfabricated devices. These advances could have broad applications in high-throughput drug assays, fundamental biophysical studies of cellular function, and development of powerful prosthetics.

中文翻译:

使用纳米线器件阵列设计和实现与生物分子、细胞和组织的功能性纳米电子接口

纳米线 FET (NWFET) 是用于与细胞和组织的纳米级生物电子界面的有前途的构建模块,因为它们在化学和生物检测中表现出极高的灵敏度,并且有可能与细胞膜形成强耦合界面。我们提出了一个通用方案,可用于在平面无机或生物相容性柔性塑料表面上组装具有合理设计的成分和几何形状的 NW。我们证明这些设备可用于测量来自神经元、心肌细胞和心脏组织的信号。报告的信号在毫伏范围内,等于或显着大于使用平面 FET 或多电极阵列记录的信号,并展示了基于 NW 的设备的一项独特优势。介绍了显示器件灵敏度和电池/基板结质量对信号幅度影响的基础研究。最后,我们展示的设计高密度 NWFET 阵列的能力使我们能够在亚细胞水平上绘制信号,这是传统微制造设备无法实现的功能。这些进展可广泛应用于高通量药物分析、细胞功能的基础生物物理研究和强大假肢的开发。
更新日期:2010-05-01
down
wechat
bug