当前位置: X-MOL 学术Flow Turbulence Combust. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Turbulent Drag Reduction by a Near Wall Surface Tension Active Interface
Flow, Turbulence and Combustion ( IF 2.4 ) Pub Date : 2018-04-25 , DOI: 10.1007/s10494-018-9918-2
Somayeh Ahmadi 1, 2 , Alessio Roccon 1, 2 , Francesco Zonta 1 , Alfredo Soldati 1, 2
Affiliation  

In this work we study the turbulence modulation in a viscosity-stratified two-phase flow using Direct Numerical Simulation (DNS) of turbulence and the Phase Field Method (PFM) to simulate the interfacial phenomena. Specifically we consider the case of two immiscible fluid layers driven in a closed rectangular channel by an imposed mean pressure gradient. The present problem, which may mimic the behaviour of an oil flowing under a thin layer of different oil, thickness ratio h2/h1 = 9, is described by three main flow parameters: the shear Reynolds number Reτ (which quantifies the importance of inertia compared to viscous effects), the Weber number We (which quantifies surface tension effects) and the viscosity ratio λ = ν1/ν2 between the two fluids. For this first study, the density ratio of the two fluid layers is the same (ρ2 = ρ1), we keep Reτ and We constant, but we consider three different values for the viscosity ratio: λ = 1, λ = 0.875 and λ = 0.75. Compared to a single phase flow at the same shear Reynolds number (Reτ = 100), in the two phase flow case we observe a decrease of the wall-shear stress and a strong turbulence modulation in particular in the proximity of the interface. Interestingly, we observe that the modulation of turbulence by the liquid-liquid interface extends up to the top wall (i.e. the closest to the interface) and produces local shear stress inversions and flow recirculation regions. The observed results depend primarily on the interface deformability and on the viscosity ratio between the two fluids (λ).

中文翻译:

通过近壁表面张力主动界面减少湍流阻力

在这项工作中,我们使用湍流的直接数值模拟 (DNS) 和相场法 (PFM) 来模拟界面现象,研究粘度分层两相流中的湍流调制。具体来说,我们考虑在封闭的矩形通道中由施加的平均压力梯度驱动的两个不混溶流体层的情况。目前的问题可以模拟油在不同油的薄层下流动的行为,厚度比 h2/h1 = 9,由三个主要流动参数描述:剪切雷诺数 Reτ(它量化了惯性的重要性,比较粘性效应)、韦伯数 We(量化表面张力效应)和两种流体之间的粘度比 λ = ν1/ν2。对于第一项研究,两个流体层的密度比相同(ρ2 = ρ1),我们保持 Reτ 和 We 不变,但我们考虑三个不同的粘度比值:λ = 1、λ = 0.875 和 λ = 0.75。与具有相同剪切雷诺数 (Reτ = 100) 的单相流相比,在两相流的情况下,我们观察到壁剪切应力的降低和强烈的湍流调制,特别是在界面附近。有趣的是,我们观察到液-液界面对湍流的调制一直延伸到顶壁(即最靠近界面的地方)并产生局部剪切应力反转和流动再循环区域。观察到的结果主要取决于界面变形能力和两种流体之间的粘度比 (λ)。与具有相同剪切雷诺数 (Reτ = 100) 的单相流相比,在两相流的情况下,我们观察到壁剪切应力的降低和强烈的湍流调制,特别是在界面附近。有趣的是,我们观察到液-液界面对湍流的调制一直延伸到顶壁(即最靠近界面的地方)并产生局部剪切应力反转和流动再循环区域。观察到的结果主要取决于界面变形能力和两种流体之间的粘度比 (λ)。与具有相同剪切雷诺数 (Reτ = 100) 的单相流相比,在两相流的情况下,我们观察到壁剪切应力的降低和强烈的湍流调制,特别是在界面附近。有趣的是,我们观察到液-液界面对湍流的调制一直延伸到顶壁(即最靠近界面的地方)并产生局部剪切应力反转和流动再循环区域。观察到的结果主要取决于界面变形能力和两种流体之间的粘度比 (λ)。我们观察到液-液界面对湍流的调制一直延伸到顶壁(即最靠近界面的地方)并产生局部剪切应力反转和流动再循环区域。观察到的结果主要取决于界面变形能力和两种流体之间的粘度比 (λ)。我们观察到液-液界面对湍流的调制一直延伸到顶壁(即最靠近界面的地方)并产生局部剪切应力反转和流动再循环区域。观察到的结果主要取决于界面变形能力和两种流体之间的粘度比 (λ)。
更新日期:2018-04-25
down
wechat
bug