当前位置: X-MOL 学术J. Electrochem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Review—Physicochemical Hydrodynamics of Gas Bubbles in Two Phase Electrochemical Systems
Journal of The Electrochemical Society ( IF 3.9 ) Pub Date : 2017-01-01 , DOI: 10.1149/2.1161713jes
Amir Taqieddin 1 , Roya Nazari 2 , Ljiljana Rajic 2 , Akram Alshawabkeh 2
Affiliation  

Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself.

中文翻译:

综述——两相电化学系统中气泡的物理化学流体力学

电化学系统对产生的气泡的管理不善。提高对气泡行为的理解有助于降低过电位、节省能源并增强化学反应过程中的传质。这项工作调查和回顾了电化学电池中气泡的流体动力学、行为和管理。尽管电极表面上气泡的生长速率已为人们所熟知,但由于电极表面附近气泡运动的复杂性,因此无法可靠地预测电极表面上气泡的破裂直径。粒子图像测速 (PIV) 和激光多普勒测速 (LDA) 是测量气泡动力学的最常用实验技术。尽管 PIV 比 LDA 快,但这两种技术都被认为既昂贵又耗时。这鼓励采用计算流体动力学 (CFD) 方法作为研究气泡行为的替代方法。但是,需要进一步开发 CFD 方法以包括气泡的聚结和破裂,以便更好地理解和提高准确性。CFD 方法的缺点可以通过使用混合方法来克服。电化学系统中气泡的行为仍然是一个复杂的具有挑战性的话题,需要更好地了解气泡的流体动力学及其与电极表面和本体液体的相互作用,以及气泡本身之间的相互作用。CFD 方法的缺点可以通过使用混合方法来克服。电化学系统中气泡的行为仍然是一个复杂的具有挑战性的话题,需要更好地了解气泡的流体动力学及其与电极表面和本体液体的相互作用,以及气泡本身之间的相互作用。CFD 方法的缺点可以通过使用混合方法来克服。电化学系统中气泡的行为仍然是一个复杂的具有挑战性的话题,需要更好地了解气泡的流体动力学及其与电极表面和本体液体的相互作用,以及气泡本身之间的相互作用。
更新日期:2017-01-01
down
wechat
bug