当前位置: X-MOL 学术Sol. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares
Solar Physics ( IF 2.8 ) Pub Date : 2018-02-15 , DOI: 10.1007/s11207-018-1253-1
J Hinterreiter 1 , A M Veronig 1, 2 , J K Thalmann 1 , J Tschernitz 1 , W Pötzi 2
Affiliation  

A statistical study of the chromospheric ribbon evolution in Hα$\alpha$ two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the Hα$\alpha$ and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. Hα$\alpha$ filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s−1). The local reconnection electric field of confined (cc=0.50±0.02$cc=0.50 \pm0.02$) and eruptive (cc=0.77±0.03$cc=0.77 \pm0.03$) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections.

中文翻译:

爆发和约束耀斑中带状演化和重联电场的统计特性

对Hα$\alpha$双色带耀斑的色球带演化进行了统计研究。该数据集由 2000 年 6 月至 2015 年 6 月发生的 50 个受限 (62%) 和喷发 (38%) 耀斑组成。这些耀斑是在 Hα$\alpha$ 和地球静止运行环境卫星 (GOES) 类别中均匀选择的,其中强调包括强大的受限耀斑和弱爆发耀斑。来自 Kanzelhöhe 天文台的 Hα$\alpha$ 滤波器图与迈克尔逊多普勒成像仪 (MDI) 和日震和磁成像仪 (HMI) 磁力图相结合,用于推导色带分离、色带分离速度、磁场强度和重联电场。我们发现喷发耀斑在统计上显示出比受限耀斑更大的带状分离和更高的带状分离速度。此外,喷发耀斑的带状分离与 GOES SXR 通量相关,而对受限耀斑没有发现明显的依赖性。最大带分离速度与 GOES 通量无关,但喷发耀斑平均显示更高的带分离速度(约 10 km s-1)。受限(cc=0.50±0.02$cc=0.50 \pm0.02$)和喷发(cc=0.77±0.03$cc=0.77 \pm0.03$)耀斑的局部重联电场与GOES通量相关,表明更强大的耀斑涉及更强的重联电场。此外,具有较高电场强度的喷发耀斑往往伴随着更快的日冕物质抛射。喷发耀斑的带状分离与 GOES SXR 通量相关,而对于受限耀斑没有发现明显的依赖性。最大带分离速度与 GOES 通量无关,但喷发耀斑平均显示更高的带分离速度(约 10 km s-1)。受限(cc=0.50±0.02$cc=0.50 \pm0.02$)和喷发(cc=0.77±0.03$cc=0.77 \pm0.03$)耀斑的局部重联电场与GOES通量相关,表明更强大的耀斑涉及更强的重联电场。此外,具有较高电场强度的喷发耀斑往往伴随着更快的日冕物质抛射。喷发耀斑的带状分离与 GOES SXR 通量相关,而对于受限耀斑没有发现明显的依赖性。最大带分离速度与 GOES 通量无关,但喷发耀斑平均显示更高的带分离速度(约 10 km s-1)。受限(cc=0.50±0.02$cc=0.50 \pm0.02$)和喷发(cc=0.77±0.03$cc=0.77 \pm0.03$)耀斑的局部重联电场与GOES通量相关,表明更强大的耀斑涉及更强的重联电场。此外,具有较高电场强度的喷发耀斑往往伴随着更快的日冕物质抛射。最大带分离速度与 GOES 通量无关,但喷发耀斑平均显示更高的带分离速度(约 10 km s-1)。受限(cc=0.50±0.02$cc=0.50 \pm0.02$)和喷发(cc=0.77±0.03$cc=0.77 \pm0.03$)耀斑的局部重联电场与GOES通量相关,表明更强大的耀斑涉及更强的重联电场。此外,具有较高电场强度的喷发耀斑往往伴随着更快的日冕物质抛射。最大带分离速度与 GOES 通量无关,但喷发耀斑平均显示更高的带分离速度(约 10 km s-1)。受限(cc=0.50±0.02$cc=0.50 \pm0.02$)和喷发(cc=0.77±0.03$cc=0.77 \pm0.03$)耀斑的局部重联电场与GOES通量相关,表明更强大的耀斑涉及更强的重联电场。此外,具有较高电场强度的喷发耀斑往往伴随着更快的日冕物质抛射。表明更强大的耀斑涉及更强的重联电场。此外,具有较高电场强度的喷发耀斑往往伴随着更快的日冕物质抛射。表明更强大的耀斑涉及更强的重联电场。此外,具有较高电场强度的喷发耀斑往往伴随着更快的日冕物质抛射。
更新日期:2018-02-15
down
wechat
bug