当前位置: X-MOL 学术IEEE ASME Trans. Mechatron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation
IEEE/ASME Transactions on Mechatronics ( IF 6.4 ) Pub Date : 2017-08-01 , DOI: 10.1109/tmech.2017.2704915
Naji Alibeji 1 , Nicholas Kirsch 1 , Brad E Dicianno 2 , Nitin Sharma 1
Affiliation  

A widely accepted model of muscle force generation during neuromuscular electrical stimulation (NMES) is a second-order nonlinear musculoskeletal dynamics cascaded to a delayed first-order muscle activation dynamics. However, most nonlinear NMES control methods have either neglected the muscle activation dynamics or used ad hoc strategies to tackle the muscle activation dynamics, which may not guarantee control stability. We hypothesized that a nonlinear control design that includes muscle activation dynamics can improve the control performance. In this paper, a dynamic surface control approach was used to design a proportional-integral-derivative (PID)-based NMES controller that compensates for electromechanical delays in the activation dynamics. Because the muscle activation is unmeasurable, a model-based estimator was used to estimate the muscle activation in real time. The Lyapunov stability analysis confirmed that the newly developed controller achieves uniformly ultimately bounded tracking for the musculoskeletal system. Experiments were performed on two able-bodied subjects and one spinal cord injury subject using a modified leg extension machine. These experiments illustrate the performance of the new controller and compare it with a previous PID-based controller with delay compensation controller that did not consider muscle activation dynamics in the control design. These experiments support our hypothesis that a control design that includes muscle activation improves the NMES control performance.

中文翻译:

延迟神经肌肉电刺激的改进的动态表面控制器。

神经肌肉电刺激(NMES)期间肌肉力量产生的一种广泛接受的模型是级联到延迟的一阶肌肉激活动力学的二阶非线性肌肉骨骼动力学。但是,大多数非线性NMES控制方法要么忽略了肌肉的激活动力学,要么采用了专门的策略来解决肌肉的激活动力学,这可能无法保证控制的稳定性。我们假设包括肌肉激活动力学的非线性控制设计可以改善控制性能。在本文中,动态表面控制方法用于设计基于比例积分微分(PID)的NMES控制器,该控制器补偿了激活动力学中的机电延迟。因为肌肉的激活是无法测量的,基于模型的估计器用于实时估计肌肉激活。Lyapunov稳定性分析证实,新开发的控制器对肌肉骨骼系统实现了统一的最终有界跟踪。使用改良的伸腿机对两名健壮受试者和一名脊髓损伤受试者进行了实验。这些实验说明了新控制器的性能,并将其与以前的带有延迟补偿控制器的基于PID的控制器进行了比较,后者在控制设计中未考虑肌肉激活动力学。这些实验支持我们的假设,即包括肌肉激活在内的控制设计可改善NMES控制性能。Lyapunov稳定性分析证实,新开发的控制器对肌肉骨骼系统实现了统一的最终有界跟踪。使用改良的伸腿机对两名健壮受试者和一名脊髓损伤受试者进行了实验。这些实验说明了新控制器的性能,并将其与以前的带有延迟补偿控制器的基于PID的控制器进行了比较,后者在控制设计中未考虑肌肉激活动力学。这些实验支持我们的假设,即包括肌肉激活在内的控制设计可改善NMES控制性能。Lyapunov稳定性分析证实,新开发的控制器对肌肉骨骼系统实现了统一的最终有界跟踪。使用改良的伸腿机对两名健壮受试者和一名脊髓损伤受试者进行了实验。这些实验说明了新控制器的性能,并将其与以前的带有延迟补偿控制器的基于PID的控制器进行了比较,后者在控制设计中未考虑肌肉激活动力学。这些实验支持我们的假设,即包括肌肉激活在内的控制设计可改善NMES控制性能。这些实验说明了新控制器的性能,并将其与以前的带有延迟补偿控制器的基于PID的控制器进行了比较,后者在控制设计中未考虑肌肉激活动力学。这些实验支持我们的假设,即包括肌肉激活在内的控制设计可改善NMES控制性能。这些实验说明了新控制器的性能,并将其与以前的带有延迟补偿控制器的基于PID的控制器进行了比较,后者在控制设计中未考虑肌肉激活动力学。这些实验支持我们的假设,即包括肌肉激活在内的控制设计可改善NMES控制性能。
更新日期:2017-08-01
down
wechat
bug