当前位置: X-MOL 学术Recent Pat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Patents and Formulation of Nanopharmaceuticals Using Ultrasonication Technique.
Recent Patents on Nanotechnology ( IF 2 ) Pub Date : 2017-11-23 , DOI: 10.2174/1872210511666171120100649
Nidhi Saiwal 1 , Mandeep Dahiya 1 , Harish Dureja 1
Affiliation  

BACKGROUND Ultrasound (US) has the ever-rising role in the delivery of therapeutic agents that includes chemotherapeutic agents, proteins, and genetic material. The microbubbles are the cavitating gas bodies that act as the mediators through which the energy of relatively non-interactive pressure waves is accumulated to produce forces that can permeabilize cell membranes and disrupt the vesicles that carry the therapeutic agent. This shows that the microbubbles greatly enhance the delivery of smaller chemical agents, proteins and genetic material. METHOD Various databases of online literature and patented reports based on sonication were reviewed. RESULTS AND CONCLUSION The literature reveals that US-assisted drug delivery is used in the delivery of therapeutic agents into various tissues including vascular, cardiac, tumor, skeletal muscle and fetal tissue. US-assisted delivery of proteins has been studied in the application in transdermal delivery of insulin, hormones and small proteins. Cavitation effect occurring during the sonication reversibly disrupts the stratum corneum structure to allow the transport of the large molecules. Cavitation disrupts the structure of the carrier vesicle and releases the drug. But there still remains a need for better understanding the physics of cavitation of microbubbles and the impact of cavitation on drug-carrying vesicles and cells. Ultrasonic technology has been proven effective at creating encapsulating particles and droplets with specific physical and functional properties. This article provides an overview of the factors influencing ultrasonication and various nanosystems formulated by using this technology.

中文翻译:

使用超声波技术的纳米药物的最新专利和配方。

背景技术超声(US)在包括化学治疗剂,蛋白质和遗传物质的治疗剂的递送中具有不断上升的作用。微气泡是空化的气体体,充当介质,相对非交互式压力波的能量通过该介质积累,产生可渗透细胞膜并破坏携带治疗剂的囊泡的力。这表明微泡大大增强了较小化学试剂,蛋白质和遗传物质的传递。方法回顾了各种在线文献数据库和基于声处理的专利报告。结果与结论文献表明,美国辅助药物输送用于将治疗剂输送到各种组织中,包括血管,心脏,肿瘤,骨骼肌和胎儿组织。在胰岛素,激素和小蛋白质的透皮递送中的应用中,已经研究了美国辅助的蛋白质递送。在超声处理期间发生的空化作用可逆地破坏了角质层结构,从而允许大分子的运输。空化破坏了载体囊泡的结构并释放了药物。但是仍然需要更好地理解微泡的空化的物理原理以及空化对载药小泡和细胞的影响。超声波技术已被证明可以有效地产生具有特定物理和功能特性的封装颗粒和液滴。本文概述了影响超声波处理的因素以及使用该技术制定的各种纳米系统。在辅助胰岛素,激素和小蛋白质的透皮递送中的应用中,已经研究了美国辅助递送的蛋白质。在超声处理期间发生的空化作用可逆地破坏了角质层结构,从而允许大分子的运输。空化破坏了载体囊泡的结构并释放了药物。但是仍然需要更好地理解微泡的空化的物理原理以及空化对载药小泡和细胞的影响。超声波技术已被证明可以有效地产生具有特定物理和功能特性的封装颗粒和液滴。本文概述了影响超声波处理的因素以及使用该技术制定的各种纳米系统。在胰岛素,激素和小蛋白质的透皮递送中的应用中,已经研究了美国辅助的蛋白质递送。在超声处理期间发生的空化作用可逆地破坏了角质层结构,从而允许大分子的运输。空化破坏了载体囊泡的结构并释放了药物。但是仍然需要更好地理解微泡的空化的物理原理以及空化对载药小泡和细胞的影响。超声波技术已被证明可以有效地产生具有特定物理和功能特性的封装颗粒和液滴。本文概述了影响超声波处理的因素以及使用该技术制定的各种纳米系统。
更新日期:2019-11-01
down
wechat
bug