当前位置: X-MOL 学术Earths Future › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models.
Earth's Future ( IF 8.852 ) Pub Date : 2017-07-18 , DOI: 10.1002/2016ef000472
Yan Sun 1, 2 , Shushi Peng 1 , Daniel S Goll 2 , Philippe Ciais 2 , Bertrand Guenet 2 , Matthieu Guimberteau 2, 3 , Philippe Hinsinger 4 , Ivan A Janssens 5 , Josep Peñuelas 6, 7 , Shilong Piao 1, 8 , Benjamin Poulter 9 , Aurélie Violette 2 , Xiaojuan Yang 10 , Yi Yin 2 , Hui Zeng 11
Affiliation  

Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

中文翻译:

在碳循环模型中诊断自然陆地生态系统中的磷限制。

大多数地球系统模型 (ESM) 预测 21 世纪净初级生产力 (NPP) 和陆地碳 (C) 储存量会增加。尽管经验证据表明磷 (P) 的有限可用性可能会限制 NPP 对增加的大气 CO2 的响应,但之前政府间气候变化专门委员会评估中使用的 ESM 均未解释 P 限制。我们使用两种方法从 ESM 模拟中诊断出支持自然生态系统增加碳吸收所需的 P 量:来自 (1) C 储量变化和 (2) NPP 变化的需求。对于代表性浓度途径 (RCP) 2.6 和 RCP8.5,基于 C 库存的额外 P 需求估计在 -31 和 193 Tg P 之间以及 -89 和 262 Tg P 之间,负值表示 P 盈余。基于 NPP 的需求,将生态系统磷回收考虑在内,导致 RCP2.6 的 P 需求显着更高,为 648-1606 Tg P,RCP8.5 为 924-2110 Tg P。我们发现 P 需求对分解植物材料中 P 的周转率很敏感,这解释了基于 NPP 的需求和基于 C 库存的需求之间的巨大差异。诊断出的 P 需求和实际 P 可用性(潜在 P 不足)之间的差异主要取决于关于不同土壤 P 形式可用性的假设。总体而言,未来的磷限制在很大程度上取决于土壤磷的有效性和生态系统规模的磷循环。我们发现 P 需求对分解植物材料中 P 的周转率很敏感,这解释了基于 NPP 的需求和基于 C 库存的需求之间的巨大差异。诊断出的 P 需求和实际 P 可用性(潜在 P 不足)之间的差异主要取决于关于不同土壤 P 形式可用性的假设。总体而言,未来的磷限制在很大程度上取决于土壤磷的有效性和生态系统规模的磷循环。我们发现 P 需求对分解植物材料中 P 的周转率很敏感,这解释了基于 NPP 的需求和基于 C 库存的需求之间的巨大差异。诊断出的 P 需求和实际 P 可用性(潜在 P 不足)之间的差异主要取决于关于不同土壤 P 形式可用性的假设。总体而言,未来的磷限制在很大程度上取决于土壤磷的有效性和生态系统规模的磷循环。
更新日期:2019-11-01
down
wechat
bug