当前位置: X-MOL 学术Microb. Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of NanoLC Column and Gradient Length as well as MS/MS Frequency and Sample Complexity on Shotgun Protein Identification of Marine Bacteria.
Microbial Physiology ( IF 1.2 ) Pub Date : 2017-08-30 , DOI: 10.1159/000478907
Lars Wöhlbrand 1 , Ralf Rabus , Bernd Blasius , Christoph Feenders
Affiliation  

Protein identification by shotgun proteomics, i.e., nano-liquid chromatography (nanoLC) peptide separation online coupled to electrospray ionization (ESI) mass spectrometry (MS)/MS, is the most widely used gel-free approach in proteome research. While the mass spectrometer accounts for mass accuracy and MS/MS frequency, the nanoLC setup and gradient time influence the number of peptides available for MS analysis, which ultimately determine the number of proteins identifiable. Here, we report on the influence of (i) analytical column length (15, 25, or 50 cm) coupled to (ii) the applied gradient length (120, 240, 360, 480, or 600 min), as well as (iii) MS/MS frequency on peptide/protein identification by shotgun proteomics of (iv) 2 marine bacteria. Longer gradients increased the number of peptides/proteins identified as well as the reproducibility of identification. Furthermore, longer analytical columns strictly enlarge the covered proteome complement. Notably, the proteome complement identified with a short column and applying a long gradient is also covered when using longer columns with shorter gradients. Coverage of the proteome complement further increases with higher MS/MS frequency. Compilation of peptide lists of replicate analyses (same gradient length) improves protein identification, while compilation of analyses with different gradient lengths yields a similar or even higher number of proteins using comparable or even less total analysis time.

中文翻译:

NanoLC色谱柱和梯度长度以及MS / MS频率和样品复杂度对海洋细菌Shot弹枪蛋白质鉴定的影响。

通过shot弹枪蛋白质组学进行蛋白质鉴定,即在线耦合电喷雾电离(ESI)质谱(MS)/ MS的纳米液相色谱(nanoLC)肽分离,是蛋白质组学研究中使用最广泛的无凝胶方法。虽然质谱仪考虑了质量准确度和MS / MS频率,但nanoLC设置和梯度时间会影响可用于MS分析的肽的数量,这最终决定了可鉴定的蛋白质数量。在这里,我们报告了(i)分析柱长度(15、25或50 cm)与(ii)应用梯度长度(120、240、360、480或600分钟)以及( iii)shot弹枪蛋白质组学对(iv)2种海洋细菌进行肽/蛋白质鉴定的MS / MS频率。较长的梯度会增加鉴定出的肽/蛋白质的数量以及鉴定的可重复性。此外,更长的分析柱会严格扩大覆盖的蛋白质组的数量。值得注意的是,当使用具有较短梯度的较长色谱柱时,也可以覆盖鉴定为较短色谱柱并应用较长梯度的蛋白质组补体。随着更高的MS / MS频率,蛋白质组补体的覆盖范围进一步增加。重复分析肽段列表的编辑(相同的梯度长度)可改善蛋白质鉴定,而使用不同的梯度长度的分析汇编可使用相当或更少的总分析时间产生相似或更高数量的蛋白质。当使用具有较短梯度的较长色谱柱时,也可以覆盖用短色谱柱识别并应用较长梯度的蛋白质组补体。随着更高的MS / MS频率,蛋白质组补体的覆盖范围进一步增加。重复分析肽段列表的编辑(相同的梯度长度)可改善蛋白质鉴定,而使用不同的梯度长度的分析汇编可使用相当或更少的总分析时间产生相似或更高数量的蛋白质。当使用具有较短梯度的较长色谱柱时,也可以覆盖用短色谱柱识别并应用较长梯度的蛋白质组补体。随着更高的MS / MS频率,蛋白质组补体的覆盖范围进一步增加。重复分析肽段列表的编辑(相同的梯度长度)可改善蛋白质鉴定,而使用不同的梯度长度的分析汇编可使用相当或更少的总分析时间产生相似或更高数量的蛋白质。
更新日期:2019-11-01
down
wechat
bug