当前位置: X-MOL 学术Quantum Inf. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental system design for the integration of trapped-ion and superconducting qubit systems.
Quantum Information Processing ( IF 2.5 ) Pub Date : 2016-07-12 , DOI: 10.1007/s11128-016-1368-y
D De Motte 1 , A R Grounds 1 , M Rehák 2 , A Rodriguez Blanco 1 , B Lekitsch 1 , G S Giri 1 , P Neilinger 2 , G Oelsner 3 , E Il'ichev 3, 4 , M Grajcar 2 , W K Hensinger 1
Affiliation  

We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi:10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

中文翻译:

用于集成捕获离子和超导量子比特系统的实验系统设计。

我们提出了一种离子捕获和超导量子比特系统的实验集成设计,作为实现量子混合系统的一步。该方案解决了实现这样一个系统的两个关键困难:一个组合的微制造离子阱和超导量子比特架构,以及促进这两种技术的实验基础设施。在 Kielpinski 等人的工作基础上进行开发。(Phys Rev Lett 108(13):130504, 2012.doi:10.1103/PhysRevLett.108.130504),我们描述了能够将离子耦合到超导微波LC的微制造离子阱的设计、模拟和制造过程耦合强度在几十 kHz 的电路。我们还描述了将离子捕获装置的实验基础设施与超导量子位结合到稀释冰箱中的现有困难,并提出了可以使用当前技术立即实施的解决方案。
更新日期:2016-07-12
down
wechat
bug