当前位置: X-MOL 学术Archaea › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reverse Methanogenesis and Respiration in Methanotrophic Archaea.
Archaea ( IF 2.4 ) Pub Date : 2017-01-05 , DOI: 10.1155/2017/1654237
Peer H A Timmers 1 , Cornelia U Welte 2 , Jasper J Koehorst 3 , Caroline M Plugge 4 , Mike S M Jetten 5 , Alfons J M Stams 6
Affiliation  

Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.

中文翻译:

甲烷营养菌古菌的逆产甲烷作用和呼吸作用。

厌氧甲烷氧化古细菌(ANME)通过反向和修饰的甲烷生成途径催化甲烷的厌氧氧化(AOM)。产甲烷菌还可以逆转产甲烷途径,以氧化甲烷,但仅限于甲烷的净生产过程中(即“痕量甲烷氧化”)。反过来,ANME可以产生甲烷,但只能在甲烷的净氧化过程中(即酶促逆流)产生甲烷。当与外部电子受体(例如硫酸盐(ANME-1,ANME-2abc和ANME-3),硝酸盐(ANME-2d)或金属(氧化物)等偶联时,净AOM会发挥作用。在这篇综述中,通过将已发表的信息与古细菌的甲烷营养生物和选定的古细菌的基于域的(元)基因组比较相结合,描述了甲烷生成途径的可逆性以及ANME与产甲烷菌之间的本质差异。这些差异包括甲基辅酶M还原酶和多血红素细胞色素的丰度和特殊结构,以及甲萘醌或甲酚吩嗪的存在。ANME-2a和ANME-2d可以分别使用除硫酸盐或硝酸盐以外的电子受体用于AOM。环境研究表明,ANME-2d也参与了硫酸盐依赖性AOM。ANME-1似乎使用了不同的电子处理机制,并且在电子受体用途上的通用性可能不及ANME-2。未来的研究将揭示甲烷转化途径逆转和不同ANME类型电子转移的分子基础。分别。环境研究表明,ANME-2d也参与了硫酸盐依赖性AOM。ANME-1似乎使用了不同的电子处理机制,并且在电子受体用途上的通用性可能不及ANME-2。未来的研究将揭示甲烷转化途径逆转和不同ANME类型电子转移的分子基础。分别。环境研究表明,ANME-2d也参与了硫酸盐依赖性AOM。ANME-1似乎使用了不同的电子处理机制,并且在电子受体用途上的通用性可能不及ANME-2。未来的研究将揭示甲烷转化途径逆转和不同ANME类型电子转移的分子基础。
更新日期:2017-01-05
down
wechat
bug