当前位置: X-MOL 学术Fuel Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells
Fuel Cells ( IF 2.8 ) Pub Date : 2016-06-01 , DOI: 10.1002/fuce.201500113
K Tseronis 1 , I S Fragkopoulos 1 , I Bonis 1 , C Theodoropoulos 1
Affiliation  

Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials.

中文翻译:

直接内部重整固体氧化物燃料电池的详细多维建模

摘要 燃料灵活性是固体氧化物燃料电池 (SOFC) 的一个显着优势,可归因于它们的高工作温度。在这里,我们考虑直接内部重整固体氧化物燃料电池设置,其中不需要单独的燃料重整器。我们构建了平面固体氧化物燃料电池的多维详细模型,其中燃料通道中的传质使用 Stefan-Maxwell 模型建模,而多孔电极内的传质使用 Dusty-Gas 模型模拟。生成的高度非线性模型内置于商业计算流体动力学软件 COMSOL Multiphysics 中,并根据文献中的实验数据进行了验证。进行了许多参数研究,以深入了解直接内部重整固体氧化物燃料电池系统的行为和效率,以帮助设计程序。结果表明,内部重整导致靠近入口的温度下降,直接内部重整固体氧化物燃料电池的性能可以通过提高工作温度来提高。还观察到入口温度的降低导致更平滑的温度分布和减小的热梯度的形成。此外,由于活化和欧姆过电位的平衡行为,发现直接内部重整固体氧化物燃料电池的性能受电化学活性阳极催化剂层厚度的影响,尽管并不总是显着。以协助设计程序。结果表明,内部重整导致靠近入口的温度下降,直接内部重整固体氧化物燃料电池的性能可以通过提高工作温度来提高。还观察到入口温度的降低导致更平滑的温度分布和减小的热梯度的形成。此外,由于活化和欧姆过电位的平衡行为,发现直接内部重整固体氧化物燃料电池的性能受电化学活性阳极催化剂层厚度的影响,尽管并不总是显着。以协助设计程序。结果表明,内部重整导致靠近入口的温度下降,直接内部重整固体氧化物燃料电池的性能可以通过提高工作温度来提高。还观察到入口温度的降低导致更平滑的温度分布和减小的热梯度的形成。此外,由于活化和欧姆过电位的平衡行为,发现直接内部重整固体氧化物燃料电池的性能受电化学活性阳极催化剂层厚度的影响,尽管并不总是显着。结果表明,内部重整导致靠近入口的温度下降,直接内部重整固体氧化物燃料电池的性能可以通过提高工作温度来提高。还观察到入口温度的降低导致更平滑的温度分布和减小的热梯度的形成。此外,由于活化和欧姆过电位的平衡行为,发现直接内部重整固体氧化物燃料电池的性能受电化学活性阳极催化剂层厚度的影响,尽管并不总是显着。结果表明,内部重整导致靠近入口的温度下降,直接内部重整固体氧化物燃料电池的性能可以通过提高工作温度来提高。还观察到入口温度的降低导致更平滑的温度分布和减小的热梯度的形成。此外,由于活化和欧姆过电位的平衡行为,发现直接内部重整固体氧化物燃料电池的性能受电化学活性阳极催化剂层厚度的影响,尽管并不总是显着。
更新日期:2016-06-01
down
wechat
bug