当前位置: X-MOL 学术Phys. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel
Physics Reports ( IF 30.0 ) Pub Date : 2016-02-01 , DOI: 10.1016/j.physrep.2015.12.004
Liang Gao 1 , Lihong V Wang 2
Affiliation  

Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons' spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition-also dubbed snapshot imaging-has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications.

中文翻译:

快照多维光学成像综述:并行测量光子标签

多维光学成像在过去十年中取得了显着的增长。多维光学成像不像传统摄影那样仅测量光的二维空间分布,而是捕获多达九个维度的光,提供有关入射光子的空间坐标、发射角、波长、时间和偏振的前所未有的信息。多维光学成像可以通过扫描或并行采集来完成。与基于扫描的成像仪相比,并行采集(也称为快照成像)在最大化光学吞吐量方面具有显着优势,特别是在测量高维度数据立方体时。在这里,我们首先根据快照多维成像仪的采集和图像重建策略对其进行分类,然后强调快照在光学吞吐量方面的优势,最后我们讨论它们最先进的实现和应用。
更新日期:2016-02-01
down
wechat
bug