当前位置: X-MOL 学术J. Math. Imaging Vis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2).
Journal of Mathematical Imaging and Vision ( IF 2 ) Pub Date : 2013-12-06 , DOI: 10.1007/s10851-013-0475-y
R Duits 1 , U Boscain 2 , F Rossi 3 , Y Sachkov 4
Affiliation  

To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem P curve of minimizing \(\int _{0}^{\ell} \sqrt{\xi^{2} +\kappa^{2}(s)} {\rm d}s \) for a planar curve having fixed initial and final positions and directions. Here κ(s) is the curvature of the curve with free total length . This problem comes from a model of geometry of vision due to Petitot (in J. Physiol. Paris 97:265–309, 2003; Math. Inf. Sci. Humaines 145:5–101, 1999), and Citti & Sarti (in J. Math. Imaging Vis. 24(3):307–326, 2006). In previous work we proved that the range \(\mathcal{R} \subset\mathrm{SE}(2)\) of the exponential map of the underlying geometric problem formulated on SE(2) consists of precisely those end-conditions (x fin,y fin,θ fin) that can be connected by a globally minimizing geodesic starting at the origin (x in,y in,θ in)=(0,0,0). From the applied imaging point of view it is relevant to analyze the sub-Riemannian geodesics and \(\mathcal{R}\) in detail. In this article we
  • show that \(\mathcal{R}\) is contained in half space x≥0 and (0,y fin)≠(0,0) is reached with angle π,
  • show that the boundary \(\partial\mathcal{R}\) consists of endpoints of minimizers either starting or ending in a cusp,
  • analyze and plot the cones of reachable angles θ fin per spatial endpoint (x fin,y fin),
  • relate the endings of association fields to \(\partial\mathcal {R}\) and compute the length towards a cusp,
  • analyze the exponential map both with the common arc-length parametrization t in the sub-Riemannian manifold \((\mathrm{SE}(2),\mathrm{Ker}(-\sin\theta{\rm d}x +\cos\theta {\rm d}y), \mathcal{G}_{\xi}:=\xi^{2}(\cos\theta{\rm d}x+ \sin\theta {\rm d}y) \otimes(\cos\theta{\rm d}x+ \sin\theta{\rm d}y) + {\rm d}\theta \otimes{\rm d}\theta)\) and with spatial arc-length parametrization s in the plane \(\mathbb{R}^{2}\). Surprisingly, s-parametrization simplifies the exponential map, the curvature formulas, the cusp-surface, and the boundary value problem,
  • present a novel efficient algorithm solving the boundary value problem,
  • show that sub-Riemannian geodesics solve Petitot’s circle bundle model (cf. Petitot in J. Physiol. Paris 97:265–309, [2003]),
  • show a clear similarity with association field lines and sub-Riemannian geodesics.


中文翻译:

通过SE(2)中的无尖子黎曼大地测量学建立的关联字段。

为了模拟在心理物理学中潜在的感知组织(格式塔)不足的关联字段,我们考虑最小化\(\ int _ {0} ^ {\ ell} \ sqrt {\ xi ^ {2} + \ kappa ^ {2}的问题P 曲线(s)} {\ rm d} s \),用于具有固定的初始和最终位置和方向的平面曲线。此处的κs)是自由总长度为的曲线的曲率。这个问题来自于Petitot(在J. Physiol。Paris 97:265–309,2003; Math。Inf。Sci。Humaines 145:5-101,1999)和Citti&Sarti(in J. Math。Imaging Vis。24(3):307-326,2006)。在先前的工作中,我们证明了范围\(\ mathcal {R} \ subset \ mathrm {SE}(2)\)制定了SE底层几何问题的指数映射的(2)由正是那些最终条件(X ÿ 翅片θ 翅片),其可以由一个全局最小测地起始在原点连接(X ÿ θ )=(0,0,0)。从应用的成像角度来看,详细分析亚黎曼测地线和\(\ mathcal {R} \)很重要。在本文中,我们
  • 表明,\(\ mathcal {R} \)被包含在半空间X ≥0和(0,ÿ 翅片)≠(0,0)达到与角π
  • 证明边界\(\ partial \ mathcal {R} \)由最小化器的端点组成,这些端点的起点或终点均为尖峰,
  • 分析并画出的可到达角锥体θ 每空间端点(X ÿ 翅片),
  • 将关联字段的结尾与\(\ partial \ mathcal {R} \)相关联,并计算到顶点的长度,
  • 分析指数映射都与公共弧长参数化在副黎曼流形\((\ mathrm {SE}(2),\ mathrm {ker的}( - \罪\ THETA {\ RM d} X + \ cos \ theta {\ rm d} y),\ mathcal {G} _ {\ xi}:= \ xi ^ {2}(\ cos \ theta {\ rm d} x + \ sin \ theta {\ rm d} y )\ otimes(\ cos \ theta {\ rm d} x + \ sin \ theta {\ rm d} y)+ {\ rm d} \ theta \ otimes {\ rm d} \ theta)\)且具有空间弧平面\(\ mathbb {R} ^ {2} \)中的长度参数化s。令人惊讶的是,s参数化简化了指数图,曲率公式,尖端表面和边值问题,
  • 提出了一种解决边值问题的新颖有效算法,
  • 证明了黎曼次大地测量学可以解决Petitot的圆束模型(参见Petitot in J. Physiol。Paris 97:265–309,[2003]),
  • 与关联场线和次黎曼测地线显示出明显的相似性。
更新日期:2013-12-06
down
wechat
bug