当前位置: X-MOL 学术J. Math. Neurosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block.
The Journal of Mathematical Neuroscience ( IF 2.3 ) Pub Date : 2015-04-09 , DOI: 10.1186/s13408-015-0017-6
Na Yu 1 , Carmen C Canavier 2
Affiliation  

Midbrain dopamine neurons exhibit a novel type of bursting that we call "inverted square wave bursting" when exposed to Ca(2+)-activated small conductance (SK) K(+) channel blockers in vitro. This type of bursting has three phases: hyperpolarized silence, spiking, and depolarization block. We find that two slow variables are required for this type of bursting, and we show that the three-dimensional bifurcation diagram for inverted square wave bursting is a folded surface with upper (depolarized) and lower (hyperpolarized) branches. The activation of the L-type Ca(2+) channel largely supports the separation between these branches. Spiking is initiated at a saddle node on an invariant circle bifurcation at the folded edge of the lower branch and the trajectory spirals around the unstable fixed points on the upper branch. Spiking is terminated at a supercritical Hopf bifurcation, but the trajectory remains on the upper branch until it hits a saddle node on the upper folded edge and drops to the lower branch. The two slow variables contribute as follows. A second, slow component of sodium channel inactivation is largely responsible for the initiation and termination of spiking. The slow activation of the ether-a-go-go-related (ERG) K(+) current is largely responsible for termination of the depolarized plateau. The mechanisms and slow processes identified herein may contribute to bursting as well as entry into and recovery from the depolarization block to different degrees in different subpopulations of dopamine neurons in vivo.

中文翻译:

中脑多巴胺神经元的数学模型确定了两个慢速变量,这些慢速变量可能与SK通道拮抗剂引起的猝发反应和去极化阻滞终止有关。

中脑多巴胺神经元表现出一种新型的爆发类型,当我们暴露于Ca(2+)激活的小电导(SK)K(+)通道阻滞剂在体外时,我们称为“倒方波爆发”。这种类型的爆发具有三个阶段:超极化静音,尖峰和去极化块。我们发现这种类型的脉冲串需要两个慢变量,并且我们显示了倒置方波脉冲串的三维分叉图是一个折叠的表面,上面有(去极化)分支,下面(了超极化)分支。L型Ca(2+)通道的激活很大程度上支持这些分支之间的分离。尖峰在下分支的折叠边缘的不变圆分叉处的鞍形节点处开始,并且轨迹在上分支的不稳定固定点周围成螺旋形。尖峰终止于超临界Hopf分叉处,但轨迹一直保留在上部分支上,直到它撞到上部折叠边缘上的鞍形节点并下降到下部分支为止。这两个慢变量的贡献如下。钠通道失活的第二个缓慢成分在很大程度上负责加标作用的起始和终止。以太相关(ERG)K(+)电流的缓慢激活是造成去极化平台终止的主要原因。本文确定的机制和缓慢的过程可能在体内多巴胺神经元的不同亚群中以不同程度的爆发,进入和从去极化阻滞进入和从中恢复。但是轨迹会一直保持在上部分支上,直到它撞到上部折叠边缘上的鞍形节点并下降到下部分支为止。这两个慢变量的贡献如下。钠通道失活的第二个缓慢成分在很大程度上负责加标作用的起始和终止。以太相关(ERG)K(+)电流的缓慢激活是造成去极化平台终止的主要原因。本文确定的机制和缓慢的过程可能在体内多巴胺神经元的不同亚群中以不同程度的爆发,进入和从去极化阻滞进入和从中恢复。但是轨迹会一直保持在上部分支上,直到它撞到上部折叠边缘上的鞍形节点并下降到下部分支为止。这两个慢变量的贡献如下。钠通道失活的第二个缓慢成分在很大程度上负责加标作用的起始和终止。以太相关(ERG)K(+)电流的缓慢激活是造成去极化平台终止的主要原因。本文确定的机制和缓慢的过程可能在体内多巴胺神经元的不同亚群中以不同程度的爆发,进入和从去极化阻滞进入和从中恢复。钠通道失活的缓慢成分在很大程度上是导致尖峰的开始和终止的原因。以太相关(ERG)K(+)电流的缓慢激活是造成去极化平台终止的主要原因。本文确定的机制和缓慢的过程可能在体内多巴胺神经元的不同亚群中以不同程度的爆发,进入和从去极化阻滞进入和从中恢复。钠通道失活的缓慢成分在很大程度上是导致尖峰的开始和终止的原因。以太相关(ERG)K(+)电流的缓慢激活是造成去极化平台终止的主要原因。本文确定的机制和缓慢的过程可能在体内多巴胺神经元的不同亚群中以不同程度的爆发,进入和从去极化阻滞进入和从中恢复。
更新日期:2019-11-01
down
wechat
bug