当前位置: X-MOL 学术Food Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mapping Moisture Sorption Through Carbohydrate Composite Glass with Fourier Transform Near-Infrared (FT-NIR) Hyperspectral Imaging.
Food Biophysics ( IF 3 ) Pub Date : 2014-11-06 , DOI: 10.1007/s11483-014-9376-x
Christine M Nowakowski 1 , William R Aimutis 2 , Scott Helstad 3 , Douglas L Elmore 4 , Allen Muroski 5
Affiliation  

Inherent changes in foods during storage are often caused by water sorption or desorption that often results in product matrix instability. Water sorption behavior differs depending on the matrix through which it moves. Often, concurrent phenomenon such as crystallization modifies water’s movement. We describe a novel use of hyperspectral imaging combined with Fourier Transform Near Infrared (FT-NIR) spectroscopy to map where water molecules are in two dimensions while concurrently quantifying the crystallization motif as water sorbs into a carbohydrate matrix over a month’s storage time. This methodology allows us to identify and quantify sucrose crystals formed within a carbohydrate matrix while also mapping water migration through this complex matrix. We compared corn syrup/sucrose blends where sucrose is supersaturated (high sucrose, HS), sucrose is below saturation (low sucrose, LS), sucrose below saturation with embedded sucrose crystals (LSS) and maltotriose is supersaturated within a corn syrup matrix (high maltotriose, LSM). This FT-NIR method was used to characterize water sorption through a carbohydrate matrix over time and measured both the propensity of the systems to form sucrose crystals and the influence sucrose crystals have on water sorption. We observed water diffusion was slower in lower sugar carbohydrate glasses, and the process of sorption was different. Amorphous systems supersaturated in sucrose allow crystallization when sufficient water is sorbed and thus, this concurrent action disrupts normal Fickian diffusion. The water front compresses to a narrow band as it sorbs through the matrix. The presence of embedded crystals in an amorphous matrix slows overall water penetration through the matrix by convoluting the path of moving water molecules. This did not appear to change the rate of diffusion. Experiments with maltotriose at supersaturation concentration showed the crystallization rate was slower than sucrose. Thus, pure maltotriose is not a practical solution as a potential replacement for sucrose to slow sorption in food systems.

中文翻译:

通过具有傅立叶变换近红外(FT-NIR)高光谱成像的碳水化合物复合玻璃对水分的吸附进行映射。

食物在储存过程中的固有变化通常是由水的吸附或解吸引起的,而水的吸附或解吸通常会导致产品基质不稳定。吸水行为随其移动的基质而异。通常,结晶等并发现象会改变水的运动。我们描述了一种结合高光谱成像和傅立叶近红外(FT-NIR)光谱学的新颖用法,以绘制水分子处于二维的位置,同时随着水在一个月的储存时间内吸收到碳水化合物基质中的同时量化了结晶基序。这种方法学使我们能够识别和量化在碳水化合物基质中形成的蔗糖晶体,同时还能绘制出水通过该复杂基质的迁移图。我们比较了蔗糖过饱和的玉米糖浆/蔗糖混合物(高蔗糖,HS),蔗糖低于饱和度(低蔗糖,LS),蔗糖低于饱和度并带有嵌入的蔗糖晶体(LSS),并且麦芽三糖在玉米糖浆基质(高麦芽三糖,LSM)中过饱和。该FT-NIR方法用于表征碳水化合物在一段时间内通过碳水化合物基质的吸收,并测量了体系形成蔗糖晶体的倾向以及蔗糖晶体对水分吸收的影响。我们观察到低糖碳水化合物玻璃杯中水的扩散较慢,并且吸附过程有所不同。当吸收足够的水时,蔗糖中过饱和的无定形体系允许结晶,因此,这种同时发生的作用破坏了正常的Fickian扩散。当水通过基质吸收时,其前部压缩成一条窄带。通过盘旋运动的水分子的路径,无定形基质中嵌入晶体的存在会减慢整个基质的水渗透速度。这似乎没有改变扩散速率。在过饱和浓度下用麦芽三糖进行的实验表明,结晶速度比蔗糖慢。因此,纯麦芽三糖不是一种可行的解决方案,因为它可能替代蔗糖以减慢食品系统中的吸收。
更新日期:2014-11-06
down
wechat
bug