当前位置 : X-MOL首页行业资讯 › 深度学习预测冠状病毒大流行风险 | Infectious Diseases of Poverty

深度学习预测冠状病毒大流行风险 | Infectious Diseases of Poverty

期刊:Infectious Diseases of Poverty

标题: Prediction of pandemic risk for animal-origin coronavirus using a deep learning method

DOI:10.1186/s40249-021-00912-6

微信原文:点击阅读微信原文


动物源冠状病毒大流行风险的早期预测对于疾病防控具有重要意义。近日,广州大学计算科技研究院寇铮课题组联合厦门大学计算机学院刘向荣课题组在 Infectious Diseases of Poverty 上发表研究论文 Prediction of pandemic risk for animal-origin coronavirus using a deep learning method。该研究将深度学习模型应用于动物源冠状病毒大流行风险预测,以卷积网络和循环神经网络提取病毒基因组特征并计算远程关联,评测结果显示该方法具有良好的预测效果。


net.jpg


冠状病毒现状


截至2021年10月20日,全球已报道COVID-19确诊病例约2.4亿,死亡人数接近500万。目前已报道七种可感染人的冠状病毒:人冠状病毒 (HCoV) 229E、 OC43、NL63 和HKU1;严重急性呼吸综合征冠状病毒(SARS-CoV和SARS-CoV-2);中东呼吸综合征冠状病毒(MERS-CoV)。冠状病毒可以从蝙蝠、果子狸、穿山甲、骆驼和禽类等动物样品中分离得到。作为动物源病原体,冠状病毒可以跨越种属屏障感染人,从而导致人际间大流行。


模型构建与性能评测

基于公共数据库中的3257条冠状病毒全基因组序列,作者采用一维卷积网络串联门控循环神经网络的深度学习模型预测大流行早期风险。为了提高预测精度,将预训练表示向量和预测向量注意力机制也加入到模型中。该预测模型可将病毒基因组序列作为整体输入使用,分析流程包括五个主要步骤:病毒基因组分割、字符串序列内嵌向量的生成、一维卷积特征提取、循环神经网络和注意力机制。


研究结果显示,六类病毒类群的特定模型取得了非常好的预测结果(AUROC为1.00,AUPR为1.00),但病毒类群之间的泛化能力较差,不具有迁移能力。作者进一步构建联合预测模型,解决了泛化能力差的问题(AUROC为1.00,AUPR为1.00)。作者进而对模型构建方法作了比较,如果去除预测模型中的预训练表示向量或者注意力机制,预测评价指标会有明显下降,幅度在5%-25%之间,说明预训练向量和注意力机制对于预测性能非常重要。该研究也测试了联合模型的迁移预测能力,结果表明联合模型对六个病毒类群有很好的迁移学习能力(平均值,AUROC为0.968,AUPR为0.942),可用于潜在新型病毒的预测。该研究同时构建人工阴性数据,以强化病毒刺突蛋白的预测权重,预测结果达到了100%的正确率。最后,作者基于Python编程语言构建可大规模使用的预测软件,开源属性方便该模型的广泛使用。



Net2.jpg



结论与展望


该研究使用预训练表示向量和注意力机制,构建了一种动物源冠状病毒大流行风险预测模型。作者用创建的预测方法,分析2020-2021年持续报道的SARS-Cov-2变异病毒,可达到100%的预测正确率,显示该方法对于变异病毒的稳健性。虽然该预测方法简便,但作者也提到预测结果的可解释性需要进一步研究和关注,利于冠状病毒跨种感染分子机制的理解。


 Infectious Diseases of Poverty

doi:10.1186/s40249-021-00912-6




如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOLx-mol.com ), 未经许可,谢绝转载!

阿拉丁
免疫学SCI期刊
OXFORD特刊征稿进行中
教育领域多学科期刊
化学材料科学SCI期刊
临床期刊 100+
世界读书日助力阅读
老年学Q1区期刊征稿进行中
FEMS Journals历年主题
分享您的投稿习惯
经济学SSCI期刊
英语语言编辑翻译加编辑新
加速出版服务新
1212购书送好礼
Springer旗下全新催化方向高质新刊
动物学生物学
系统生物学合成生物学
专注于基础生命科学与临床研究的交叉领域
传播分子、细胞和发育生物学领域的重大发现
聚焦分子细胞和生物体生物学
图书出版流程
快速找到合适的投稿机会
热点论文一站获取
定位全球科研英才
中国图象图形学学会合作刊
澳大利亚
上海交大
北京大学
浙江大学
广州
德国
北大
哈尔滨
瑞典
瑞典
ACS材料视界
down
wechat
bug