当前位置 : X-MOL首页行业资讯 › 超疏水油水分离膜,也能3D打印

超疏水油水分离膜,也能3D打印

就在数周前,载凝析油约13.6万吨的“桑吉”轮因碰撞事故起火并沉没。据央视新闻报道,“桑吉”轮沉没后海面上只有的残留物和残油在燃烧,并形成了10平方公里的油污带,溢油情况非常严重。

图片来源:央视新闻


这样的石油产品泄漏事件对于海洋环境及生态的影响巨大,除此之外工业含油污水排放的不断增加,也使得不少河流湖泊收到含油废水的污染。油水分离处理是解决这些问题的关键步骤,目前诸多的多孔材料已经广泛应用于各种场合的油水分离,如网栅状材料、纤维织物、海绵/泡沫状基材等。上述膜材料都展现出较高的油水分离效率,但是其涉及到的无溶剂诱导相分离、热诱导相分离、蒸汽诱导相分离等多孔膜制备方法往往产生大量的资源浪费,同时带来水污染和空气污染问题。3D打印技术作为一种新型的高效材料成型技术,已经大量应用于各种复杂结构三维材料的制备。但是,基于3D打印技术制备用于油水分离应用多孔膜材料的相关研究还相对较少。


近日,比利时鲁汶大学(KU Leuven)化学工程系Bart Van der Bruggen研究团队采用选择性激光烧结3D打印技术制备聚砜多孔膜,随后在其上沉积蜡烛灰(candle soot)疏松网络结构,轻松获得超疏水表面。这种具有优异机械稳定性和化学稳定性超疏水聚砜膜两侧呈现不同的润湿性,而且通过水预润湿,表面能够转变为超疏油状态。该超浸润性功能膜材料在油水循环应用中展现出优异的性能稳定性和理想的分离效率。

图片来源:J. Mater. Chem. A


选择性激光烧结3D打印技术的分辨率在微米级别,非常适用于制备具有微米级孔结构的油水分离膜。在激光烧结过程中其激光功率、扫描间距、扫描基数等参数对最终多孔膜的形貌具有重要的影响。研究团队经过系统研究最终选定最佳工艺参数为:选用耐温性较好的聚砜为聚合物基质,激光功率15 W,扫描间距0.15 mm,扫描基数1。构筑的多孔聚砜膜的SEM形貌表征显示,最表层为相对致密的多孔激光烧结膜,表层底部是聚砜颗粒未完成烧结形成的颗粒状结构,膜底部则为疏松的聚结的聚砜颗粒结构。

3D打印聚砜膜表面、截面和底部形貌SEM表征。图片来源:J. Mater. Chem. A


基于最佳工艺参数构筑的多孔聚砜膜M1其表面孔径范围为12-114 μm,平均孔径为51.8 μm,与聚砜颗粒尺寸相当。膜的水通量和力学性能测试表明多孔聚砜膜M1具有较高的水通量(24,600 L/(m2 h bar))和优异的机械性能(抗张强度为17.3 MPa),加工工艺参数对膜性能也呈现出重要影响。由于多孔聚砜膜两侧具有不同的表面形貌结构,其表层和底部呈现出不同润湿性:多孔膜顶层水接触角为89°,底部水接触角为124°。

3D打印聚砜膜的性能和物理性质。图片来源:J. Mater. Chem. A


随后,研究人员在多孔聚砜膜表面通过浸渍自组装沉积蜡烛灰粗糙结构。随着浸渍时间的延长,多孔膜表面沉积形成的无机颗粒层形貌和疏水性都产生了显著的变化,当浸渍时间超过28 min时膜表面水接触角达到155°。

沉积蜡烛灰的聚砜膜的水接触角变化。图片来源:J. Mater. Chem. A


这种沉积蜡烛灰的3D打印聚砜膜具有超疏水性,表面水接触角可达161°,滚动角小于5°,而且对盐酸溶液、热水、氢氧化钠溶液等都呈现优异的超疏性能,化学稳定性优异。此外还能呈现出超亲油特性,油滴能够迅速的渗透入膜内(< 1.5 s)。

沉积蜡烛灰的多孔聚砜膜表面的超疏水/超亲油特性。图片来源:J. Mater. Chem. A


在油水分离实验中,这种沉积蜡烛灰的3D打印聚砜膜表现出了良好的性能。其重力驱动通量约为19,000L/(m2 h),分离效率超过99%,而且循环使用性能稳定,10个循环之后,分离率仍可超过99%。更有意思的是,通过水预润湿,膜表面能够从超疏水状态转变为超疏油状态(下图e)。

沉积蜡烛灰的多孔聚砜膜的油水分离(水中加入红色染料)。图片来源:J. Mater. Chem. A


——总结——


基于选择性激光烧结3D打印技术和表面无机颗粒沉积修饰,本文作者构筑了表面具有超疏水/超亲油特性的多孔聚砜膜材料,而且通过水预润湿,膜表面还能够转变为超疏油状态。该多孔膜材料具有优异的机械性能和化学稳定性,在高效油水分离应用中展现出良好的应用前景。该研究成果避免传统分离膜构筑过程中带来的资源浪费和环境污染问题,为高效油水分离膜的构筑开辟了新的途径。


原文(扫描或长按二维码,识别后直达原文页面,或点此查看原文):

Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation

J. Mater. Chem. A, 2017, 5, 25401-25409, DOI: 10.1039/C7TA08836A


(本文由宗传永-济大供稿)


如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOLx-mol.com ), 未经许可,谢绝转载!

ELSEVIER第一届国际分离钝化技术大会
默克礼享季
2022年中国科研人员写作有奖调研
最新CiteScore引用分出炉
Nano Research Energy纳米科学1区
药物警戒和药物安全
陶瓷、玻璃及复合材料领域的国际期刊
Gut Microbes专注于肠道菌群领域
Blood征稿
中日韩建筑学会合办期刊
Blood Advance征稿
爱思唯尔清华大学合作新刊
有道词典
Nature学术期刊平台培训
亚洲与全球经济特刊征稿
SpringerMaterials-材料数据的快速、权威解决方案
SN Applied Sciences电池
Discover Chemical Engineering
langmuir lecture
Frontiers出版社与浙江大学伙伴关系
Drug Delivery 给药系统
SN Applied Sciences期刊征稿
Discover Sustainability特刊征稿
绿色化学跨学科研究方法
农用化学品对水质影响合集征稿
默克化学品
屿渡论文,编辑服务
浙大
香港
KU
浙大
刘鸣炜
UCLA
席雨濛
天大
纽约
上海中医药-连续6个月
南科大
香港中文
上海交大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
试剂库存
down
wechat
bug