近日,上海大学理学院赵宏滨教授和中国科学院宁波材料技术与工程研究所何佩雷研究员团队在Science China Chemistry上发表了名为《Sub 1 nm high-entropy oxide nanosheets for robust oxygen evolution reaction at large current density》的最新成果。
为应对日益严峻的能源危机,在开发清洁能源技术的过程中,构建高效、稳定且由地球丰富元素组成的电催化材料成为研究热点。作为制氢关键步骤的析氧反应(OER)由于其反应路径复杂、动力学迟缓,亟需性能优异的催化剂予以提升。目前虽有RuO2、IrO2等贵金属氧化物展现出良好性能,但其高成本和资源稀缺性限制了其大规模应用。因此,发展基于多元素、结构可控的新型材料体系,以替代传统贵金属催化剂,实现高性能与高稳定性的协同提升,是当前研究的重要方向。
高熵氧化物(High-entropy oxides, HEOs)因其多组元协同效应、高熵稳定性和晶格畸变特性,在电催化领域展现出巨大潜力。然而,传统HEOs多由高温固相法制备,产物粒径大、活性位点暴露度低,难以满足高电流密度下的高效催化需求。
针对这一挑战,本文通过“团簇-核共组装”策略,在温和条件下(140°C)成功构建亚纳米厚度的高熵氧化物纳米片(sub-1 nm SNSs),并将磷钼酸(phosphomolybdic acid, PMA)引入反应体系作为组装连接剂,实现了元素精准调控和结构有序构筑(图1)。

Figure 1 TEM images of the (a) FeCoOx-PMA, (b) FeCoNiOx-PMA, (c) FeCoNiCrOx-PMA, and (d) HEO-PMA SNSs. (e) HAADF-STEM image, (f) AFM results, (g) SAXRD pattern, and (h) EDS mapping images of the HEO-PMA SNSs
如图2所示,所制备的FeCoNiCrVOX-PMA SNSs展现出优异的OER性能:在10 mA cm-2的电流密度下仅需229 mV过电位,Tafel斜率仅为35.3 mV dec-1,且在250 mA cm-2大电流下稳定运行超过1000小时,远超目前多数非贵金属催化剂。

Figure 2 (a) LSV curves of FeCoNiCrVOx-PMA, FeCoNiCrOx-PMA, FeCoNiOx-PMA, and FeCoOx-PMA SNSs. (b) Different current densities corresponding to the overpotential of the catalyst. The corresponding (c) Tafel slopes, (d) Cdl values, and (e) EIS curves of MOx-PMA SNSs. (f) Comparison of overpotential at 10 mA cm-2 and stability with electrocatalysts reported in the literature for the OER. Related references are cited in the Supporting Information. (g) Chronopotentiometry of the FeCoNiCrVOx-PMA SNSs for over 1000 h.
该优异性能来源于结构层面的精细调控与成分协同机制,具体体现在以下两个方面。一是PMA簇与多金属氧化物之间的静电与范德华作用,实现了稳定的共组装结构(图3);二是多组元金属在亚纳米尺度下的协同作用,提高了催化活性和电子传输效率。密度泛函理论(DFT)计算进一步揭示了Co为主要活性位点,Ni,V和Fe等元素的配位有效降低了反应的速率决定能垒,仅为0.50 eV(图4)。

Figure 3 MD simulations of HEO-PMA. (a) The original model and (b) final model of HEO-PMA building block (Co: purple sphere, Fe: yellow sphere, Ni: Silver sphere, Cr: blue sphere, V: orange sphere, O: red sphere, PMA: red polyhedron, and OLY: green linear model). (c) The density distribution in the HEO-PMA building block along the Z direction. (d) The potential energy change curves corresponding to the formation of HEO-PMA building block. (e) The top views of HEO-PMA SNSs. The density distribution of HEO-PMA SNSs along the (f) Z-axis (inset shows the side views of HEO-PMA SNSs) and (g) X-axis. (h) Interaction energy variation curves among PMA, metal oxides, and the OLY in HEO-PMA SNSs. (i) The potential energy change curves corresponding to the formation of HEO-PMA SNSs.

Figure 4 The standard free energy diagrams on HEO-PMA SNSs with various models: (a) Co-FeCoNi, Fe-FeCoNi, and Ni-FeCoNi, (b) Co-FeCrNi and Co-FeVNi, and (c) Co-CrVFe and Co-CrVNi at U = 1.23 V (the insets in panels (a−c) are the corresponding partial models with the active sites highlighted in the dashed circles). (d) Scheme of the OER pathways of FeCoNiCrVOx-PMA SNSs. (e) The standard free energy diagrams in the OER process on FeCoNiCrVOx-PMA, FeCoNiCrOx-PMA, FeCoNiOx-PMA, and FeCoOx-PMA SNSs.
该研究不仅提供了构筑亚纳米高熵氧化物的新思路,也验证了结构设计与组元工程在催化性能调控中的重要性。通过该策略构建的HEO-PMA SNSs材料,有望为电解水制氢、CO2还原等电催化体系提供通用型、高稳定性的催化平台,对未来能源转换与存储技术发展具有重要意义。
相关论文发表在Science China Chemistry上。文章的第一作者是上海大学的硕士研究生曹行健,通讯作者为上海大学赵宏滨教授和中国科学院宁波材料技术与工程研究所何佩雷研究员。