184946
当前位置: 首页   >  课题组新闻   >  胡立兵同学等在CCL上发表论文:由生物质壳聚糖制备Zn-N-C电催化剂
胡立兵同学等在CCL上发表论文:由生物质壳聚糖制备Zn-N-C电催化剂
发布时间:2019-06-24

石河子大学化学化工学院清洁能源转化与储存研究团队(Clean Energy Conversion and Storage Research Group)依托新疆兵团绿色化工过程重点实验室,开展了光电气能源利用方面的研究工作,致力于传统能源、现代能源与未来能源的开发与利用。目前,该团队已经形成了CO/CO2甲烷化、二次电池与超级电容器与光电催化产氢等研究方向。

近日,该团队基于生物质壳聚糖本身富含氮碳元素的特点,采用碳浴法成功制备了锌氮掺杂的碳材料(Zn-N-C)。制备的Zn-N-C具有优异的比表面积(794.7 m2/g)和孔体积(0.49 cm3/g),显示出了较高的氧还原反应(ORR)催化活性,其起始电位E0= 0.96 VRHE和半波电位E1/2= 0.86 VRHE,明显高于商业20wt% Pt/C催化剂(E0= 0.94 VRHEE1/2= 0.81 VRHE)。此外,Zn-N-C催化剂也具有比Pt/ C催化剂更好的稳定性和抗甲醇中毒性能。相关工作以 “Overwhelming eletrochemical oxygen reduction reaction of zinc-nitrogen-carbon from biomass resource chitosan via a facile carbon bath method”为题,在期刊《ChineseChemical Letters》上发表(图1)。该论文第一作者胡立兵,通讯作者于锋副教授、田植群教授和代斌教授。Chinese Chemical Letters (CCL) 的中文名为《中国化学快报》,是中国化学会和中国医学科学院药物研究所共同主办的化学综合性学术期刊,月刊,SCI收录期刊,是中国化学领域唯一的快报类期刊,目前与Elsevier出版公司合作出版,主编钱旭红院士。 

 

                           

炭浴法制备Zn-N-C电催化剂(Chinese Chemical Letter, 2019, online. DOI:10.1016/j.cclet.2019.06.041)。

 

 

 同时,该团队还采用壳聚糖和普鲁士蓝为前驱体,采用一步炭浴法制备了氮掺杂碳包覆Fe3O4/Fe3C纳米颗粒(Fe3O4/Fe3C@NC)用作电催化氧还原(ORR)催化剂。Fe3O4/Fe3C@NC具有丰富的Fe-Nx等活性位点,Fe3O4可以改变了Fe-Nx位点的电荷密度促进了电子转移,而且Fe3C纳米粒子与氮掺杂碳的具有协同催化作用。该催化剂在碱性电解质中具有优异的起始点位为0.966 Vvs RHE)和极限电流密度为5.59 mA/cm2,稳定性与抗甲醇性能均优于商用Pt/C催化剂。相关工作以“Fe3O4/Fe3C@nitrogen-doped carbon for enhancing oxygen reduction reaction”为题,在《ChemNanoMat》(封面文章)上发表(图2),该研究成果一经刊出即被国际权威学术新闻媒体ChemistryViews“Iron-Based Hybrid Electrocatalysts”为题作为亮点进行了介绍(https://www.chemistryviews.org/details/ezine/11119934/Iron-Based_Hybrid_Electrocatalysts.html)。该论文第一作者硕士研究生刘民聪,通讯作者郭旭虹教授、Lili ZhangScientist II)和于锋副教授。



炭浴法制备Fe3O4/Fe3C@NC电催化剂(ChemManoMat, 2019, 5:187-193. DOI:10.1002/cnma.201800432)(封面文章)。

 

此外,该团队还采用壳聚糖气凝胶和硝酸镍为前驱体,采用快速燃烧法(Explosion method),制备了氮掺杂炭气凝胶负载Ni-NiO纳米颗粒的复合材料,即Ni-NiO/NCA。得到的Ni-NiO/NCA具有超低的密度(0.42 g/cm3)和优异的吸波性能,最大微波反射损耗可达-41.9 dB15.2 GHz)。快速燃烧法也为制备低密度的吸波材料提供了一条思路。诚然,快速燃烧法的可控性也有待于进一步研究。该工作以“An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance”为题,在《Journal of Aolly and Compounds》上发表(图3),该论文第一作者硕士研究生王莉娜,通讯作者于锋副教授和张金利教授。

 


3 Ni-NiO/NCA 的反射损耗图和实验流程图(Journal of Alloys and Compounds, 2019, 776:43-51. DOI:10.1016/j.jallcom.2018.10.214)。

 

以上研究工作得到了国家自然科学基金(No.U1303291);长江学者与创新团队发展计划(No. IRT_15R46)等项目资助。

 

相关“炭浴沙浴微波浴”热处理方法的介绍:

炭浴沙浴微波浴,“浴”火重生催化剂。http://www.cailiaoniu.com/161122.html


发表相关文章:

一、电化学催化类文章

[ORR, Fe3O4/Fe3C@N-C] Mincong Liu, Xuhong Guo*, Libing Hu, Huifang Yuan, Gang Wang, Bin Dai, Lili Zhang*, Feng Yu*. Fe3O4/Fe3C@nitrogen-doped carbon for enhancing oxygen reduction reaciton. ChemManoMat, 2019, 5: 187-193. DOI:10.1002/cnma.201800432 cover paper

 

[ORR, N-PEGO] Yiqing Wang, Feng Yu*, Mingyuan Zhu, Cunhua Ma, DanZhao, Chao Wang, Amin Zhou, Bin Dai, Junyi Ji*, Xuhong Guo*, N-doping of plasma exfliated graphene oxide via dielectric barrier discharge plasma treatment for oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6(5):2011-2017. DOI: 10.1039/C7TA08607EInside back cover paper

 

[ORR, N,S-C] Yiqing Wang, Mingyuan Zhu, Yingchun Li, Mengjuan Zhang, Xueyan Xue, Yulin Shi, Bin Dai, Xuhong Guo*, Feng Yu*. Heteroatom-doped porous carbon from methyl orange dye waster water for oxygen reduction, Green Energy & Environment, 2018, 3(2): 172-178. DOI: 10.1016/j.gee.2017.06.005

 

[ORR, Defective ZnS/N-C] Libing Hu#, Zengxi Wei#, Feng Yu*, Huifang Yuan, Mincong Liu, Gang Wang, Banghua Peng, Bin Dai*, Jianmin Ma*. Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst. Journal of Energy Chemistry. 2019, 39:152-129. DOI:10.1016/j.jechem.2019.01.018

 

[ORR, Zn-N-C]Libing Hu, Feng Yu*, Fu Wang, Shengchao Yang, Banghua Peng, Long Chen, GangWang, Juan Hou, Bin Dai*, Zhiqun Tian*. Overwhelming electrochemical oxygen reduction reaction of zinc-nitrogen-carbon from biomass resource chitosan via a facile carbon bath method. Chinese Chemical Letter, 2019,  DOI:10.1016/j.cclet.2019.06.041

 

[ORR, Co-CoOx/N-C] Libing Hu, Feng Yu*, Huifang Yuan, Gang Wang, Mincong Liu, Lina Wang, Banghua Peng, Zhiqun Tian*, Bin Dai*. Improved oxygen reduction reaction via a partically oxidized Co-CoO catalyst on N-doped carbon synthesized by a facile sand-bath route. Chinese Chemical Letters. 2019, 30(3): 624-629. DOI:10.1016/j.cclet.2018.10.039

 

[OER, NiFe-LDH WO4] Xueyan Xue, Feng Yu*, Banghua Peng, Gang Wang, Yin Lv, Long Chen, Yongbin Yao, Bin Dai, Yulin Shi*, Xuhong Guo*. One-step synthesis of nickel-iron layered double hydroxides with tungstate acid anion via flash nano-precipitation for oxygen evolution reaction. Sustainable Energy & Fuel, 2019, 3(1): 237-244. DOI: 10.1039/C8SE00394G

 

二、电化学储能类文章

[微波法、锂电正极Feng Yu*, Lili Zhang, Mingyuan Zhu, Yongxin An, Lili Xia, Xugen Wang, Bin Dai*. Overwhelming microwave irradiation assisted synthesis ofolivine-structured LiMPO4 (M=Fe, Mn, Co and Ni) for Li-ion batteries. Nano Energy,2014, 3, 64-79. DOI: 10.1016/j.nanoen.2013.10.011

 

[锂电正极、微球] Feng Yu, Jingjie Zhang*, Yanfeng Yang, Guangzhi Song. Up-Scalable Synthesis, Structure and Charge Storage Properties of Porous Microspheres of LiFePO4@C Nanocomposites. Journal of Materials Chemistry, 2009, 19:9121-9125. DOI: 10.1039/B916938e

 

[锂电负极、SnS2@PANI] Gang Wang*, Jun Peng, Lili Zhang, Jun Zhang, Bin Dai*, Mingyuan Zhu, Lili Xia, Feng Yu*. Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for lithium-ion batteries, Journal of Materials Chemistry A, 2015, 3(7): 3659-3666. DOI: 10.1039/C4TA06384H

 

[锂电负极、CuOMOF] Renbing Wu#, Xukun Qian#, Feng Yu, Hai Liu, Kun Zhou*, Jun Wei*, Yizhong Huang*. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. Journal of Materials Chemistry A, 2013, 1, 11126-11129. DOI: 10.1039/c3ta12621h

 

[锂电正极、磷掺杂碳层] Jinli Zhang, Jiao Wang, Yuanyuan Liu, Ning Nie, Junjie Gu, Feng Yu, Wei Li*. High-performance lithium iron phosphate with phosphorus-doped carbon layers for lithium ion batteries. Journal of Materials Chemistry A. 2015, 3(5): 2043-2049. DOI: 10.1039/C4TA05186F

 

[锂电负极、Fe3S4] Guowei Li, Baomin Zhang, Feng Yu, Alla A. Novakova, Maxim S. Krivenkov, Tatiana Y. Kiseleva, Liao Chang, Jiancun Rao, Alexey O. Polyakov, Graeme R. Blake, Robert A. de Groot, Thomas T. M. Palstra, High-Purity Fe3S4 Greigite Microcrystals for Magnetic and Electro-chemical performance. Chemistry of Materials. 2014, 26(20): 5821-5829. DOI: 10.1021/cm501493m

 

[锂电正极、多孔球形] Feng Yu, Sanhua Lim, Yongda Zhen,Yongxin An, Jianyi Lin*. Optimized Electrochemical Performance of Three-Dimensional Porous LiFePO4/C Microspheres via Microwave Irradiation Assisted Synthesis. Journal of Power Sources, 2014, 271:223-230. DOI: 10.1016/j.jpowsour.2014.08.009

 

[锂电正极、多孔球形] Feng Yu, Jingjie Zhang*, Yanfeng Yang,Guangzhi Song. Porous micro-spherical aggregates of LiFePO4/C nanocomposites: Anovel and simple template-free concept and synthesis via Sol-Gel-SD method. Journal of Power Sources, 2010, 195, 6873-6878. DOI: 10.1016/j.jpowsour.2010.01.042

 

[锂电正极、多孔球形] Feng Yu, Jingjie Zhang*, Yanfeng Yang, Guangzhi Song. Preparation and characterization of mesoporous LiFePO4/C microsphereby spray drying assisted template method[J]. Journal of Power Sources, 2009, 189, 794-797. DOI: 10.1016/j.jpowsour.2008.07.074

 

[锂电正极、碳热反应原理] Feng Yu, Jingjie Zhang*, Yanfeng Yang, Guangzhi Song. Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method. Electrochimica Acta, 2009, 54:7389-7395. DOI: 10.1016/j.electacta.2009.07.071

 

[锂电正极、高剪切、过程强化] Yuanyuan Liu, Junjie Gu, Jinli Zhang, Jiao Wang, Ning Nie, Yan Fu, Wei Li*, Feng Yu*. Controllable synthesis of nano-sized LiFePO4/C via a high shear mixer facilitated hydrothermal method forhigh rate Li-ion batteries. Electrochimica Acta, 2015, 173: 448-457. DOI:10.1016/j.electacta.2015.05.103

 

[锂电正极、微波辐射、还原氧化石墨烯Feng Yu, Lili Zhang, Linfei Lai, Mingyuan Zhu, Yanchuan Guo, Lili Xia, Peirong Qi, Gang Wang, Bin Dai*. High Electrochemical Performance of LiFePO4 Cathode Material via In-Situ Microwave Exfoliated Graphene Oxide. Electrochimica Acta. 2015, 141, 240-248. DOI: 10.1016/j.electacta.2014.11.014.

 

[超级电容, NiCo2O4] Haihai Fu, Yi Liu, Long Chen*, Yulin Shi, Wenwen Kong, Juan Hou, Feng Yu, Tingting Wei, Hao Wang, Xuhoong Guo*. Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2019, 296: 719-729. DOI: 10.1016/j.electacta.2018.11.103

 

[超级电容、生物质活性炭Hui Chen,Yanchuan Guo, Fu Wang, Gang Wang, Peirong Qi, Xuhong Guo, Bin Dai, Feng Yu*. Anactivated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Materials, 2017, 32(6):592-599. DOI:10.1016/S1872-5805(17)60140-9

 

[超级电容、生物质活性炭Bingzhi Liu, Lili Zhang,Peirong Qi, Mingyuan Zhu, Gang Wang, Yanqing Ma, Xuhong Guo, Hui Chen, Boya Zhang, Zhuangzhi Zhao, Bin Dai, Feng Yu*. Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors. Nanomaterials, 2016, 6(1): 18. DOI: doi:10.3390/nano6010018

 

[锂电正极、碳层调控] Taotao Huo, Ning Nie, Yuanyuan Liu, Jinli Zhang, Feng Yu*, Wei Li*. Naphthalene-modulated microporous carbon layers of LiFePO4 improvethe high-rate electrochemical performance. Journal of Energy Chemistry. 2019, 30:84-89. DOI:10.1016/j.jechem.2018.04.002

 

[锂电负极、CoOMOF] Dongxia Wang,Bo Yan, Yujuan Guo, Long Chen, Feng Yu*, Gang Wang*. N-doped carbon coated CoO nanowire arrays derived from zeolitic imidazolated Framework-67 as Binder-freeAnodes for High-performance Lithium Storage. Scientific Reports, 2019, 9(1):5934. DOI:10.1038/s41598-019-42371-y