
Our new publication in Chemical Engineering Journal reports a novel approach to fundamentally overcome the limitations of surface morphology controllability, material robustness, separation flux and preparation efficiency, providing a critical tool for the design of superwetting functional materials.
Motivations: Heretofore, a large number of strategies have been proposed to create superwetting surfaces. These surfaces enable a range of fascinating functionalities but suffer from drawbacks such as lengthy processing times and low preparation efficiency. Generally, these strategies rely on complex multi-step processes, involving stepwise procedures for creating rough morphologies and reducing surface energy. This stepwise approach is limited by the non-uniform superwetting surfaces and internal structures and uncontrollable film-forming properties. As a result, the created structures inevitably suffer from limited structural durability and chemical reliability, not to mention increased production costs associated with the secondary transfer step, thereby preventing their widespread practical applications. Thus, it is imperative to develop one-step, economical, rapid, and scalable strategies for the direct manufacture of robust superwetting materials."
The main point of this report: In a unique angle of view, this study aimed to modulate Zn depositing kinetics through one-step electrodeposition technique, which serves for the formation of Zn (002) plane hexagonal platelet orientation, while inhibiting irregular zinc dendrite growth. The innovative aspect of this study lies in that zinc crystal growth influenced by Mn additive, deposition current density, and deposition time is unveiled in detail. We demonstrated that this approach can achieve high oil-water separation efficiency and flux (55.58 kL/m2h) by combining size sieving with stainless steel mesh screening. We view this approach as a useful example in the one-step morphological construction strategy recently developed by our team, as it greatly enhances the robustness of the zinc coating. Furthermore, this method represents an important advancement in electrodeposition technology, expanding the applicability of traditional electrodeposited materials, significantly reducing preparation time (15 min) and enhancing the controllability and consistency of production. This study opens new possibilities for the economically efficient, large-scale production of superwetting materials
我们在《化学工程杂志》上发表的新论文报告了一种新颖的方法,从根本上克服了表面形态可控性、材料稳定性、分离通量和制备效率的限制,为超润湿功能材料的设计提供了关键工具。
动机:迄今为止,已提出大量策略来创建超润湿表面。这些表面能够实现一系列迷人的功能,但存在处理时间长和制备效率低等缺点。通常,这些策略依赖于复杂的、多步骤的过程,涉及创建粗糙形态和降低表面能量的分步步骤。这种分步方法受到非均匀超润湿表面和内部结构以及不可控的薄膜形成特性的限制。因此,所创建的结构不可避免地存在结构耐久性和化学可靠性有限的问题,更不用说与二次转移步骤相关的增加的生产成本,这阻碍了它们在实际应用中的广泛使用。因此,迫切需要开发一种一步法、经济、快速且可扩展的策略,用于直接制造坚固的超润湿材料。
本报告的主要观点:本研究旨在通过一步电沉积技术,从一个独特的视角调节锌沉积动力学,该技术有助于形成锌(002)面六方片状晶体的取向,同时抑制不规则锌枝晶的生长。本研究的创新之处在于,详细揭示了锌晶体生长受锰添加剂、沉积电流密度和沉积时间的影响。我们证明,这种方法可以通过结合尺寸筛分与不锈钢丝网过滤,实现高油水分离效率和通量(55.58 kL/m2h)。我们认为这种方法是我们团队最近开发的一步形态构建策略中的一个有用实例,因为它极大地提高了锌涂层的稳定性。此外,这种方法代表了电沉积技术的一个重要进步,扩大了传统电沉积材料的适用性,显著缩短了制备时间(15分钟),并提高了生产的可控性和一致性。本研究为经济高效、大规模生产超润湿性材料开辟了新的可能性。
DOI:https://doi.org/10.1016/j.cej.2024.155369