41503
Current Page: Home   >  People   >  Feng Peng
Feng Peng Professor    


Prof. Feng Peng, received his B.S. degree (1990) and M.S. degree (1993) in Chemical Engineering from Hunan University and his Ph.D. degree in Industrial Catalysis from South China University of Technology in 1996. His research field is nanomaterials and catalysis for energy and environment. He worked at South China University of Technology during 1996–2017. He is currently working in School of Chemistry and Chemical Engineering at Guangzhou University. He has contributed more than 300 peer-reviewed papers and 30 patents.


Education


09/1993-06/1996 South China University of Technology,Chemical Engineering,PhD

09/1990-04/1993  Hunan University,Chemical Engineering,Master

09/1986-06/1990  Hunan University,Chemical Engineering,Bachelor


Working experience


01/2018-current      Guangzhou University, Professor

12/2006-17/2017   South China University of Technology, Professor/PhD advisor

12/2000.12-12/2005    South China University of Technology,Accoicate professor/Master advisor

07/1996-11/2000    South China University of Technology,Lecturer


Research interests


  1.  Carbon nanomaterials and carbon catalysis

  2. Photocatalytic materials and their applications

  3. Nanomaterials for fuel cells

  4. Materials for electrocatalytic conversion of CO2



Peer-reviewed papers (2010-current)


Electrocatalysis

  1. Y. Zhu, X. Li, Q. Zhang, F. Peng, Which Is Better for Hydrogen Evolution on Metal@MoS2 Heterostructures from a Theoretical Perspective: Single Atom or Monolayer, ACS Applied Materials & Interfaces2022, 14(22): 25592-25600
  2. L. Lai, G. Yang, Q. Zhang, H. Yu, F. Peng, Essential analysis of cyclic voltammetry of methanol electrooxidation using the differential electrochemical mass spectrometry, Journal of Power Sources2021, 509, 230397.
  3. D. Shen, Y. Liu, G. Yang, H. Yu, P. Liu, F. Peng, Surface-structure sensitive chemical diffusivity and reactivity of CO adsorbates on noble metal electrocatalysts, Applied Catalysis B: Environmental2021, 281, 119522.

  4. B. Qin, Y. Li, Q. Zhang, G. Yang, H. Wang, Y. Zhang, F. Peng, Mechanistic Insights into the Electrochemical Reduction of CO2 and N2 on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations, Journal of Physical Chemisty Letters2021, 12, 7151-7158

  5. D.Q. Liu, G.X. Yang, Q. Zhang, H.J. Wang, H. Yu, F. Peng, Highly Enhanced Methanol Electrooxidation on Pt/N-CNT-Decorated FeP**, ChemElectroChem2021, 8, 2442-2448.

  6. G. Yang, Q. Zhang, H. Yu, F. Peng, Platinum-based ternary catalysts for the electrooxidation of ethanol, Particuology2021, 58:169-186.
  7. B. Qin, Y. Li, Q. Zhang, G. Yang, H. Liang, F. Peng, Understanding of nitrogen fixation electro catalyzed by molybdenum-iron carbide through the experiment and theory, Nano Energy2020, 68: 104374

  8. Y. Shen, Y. Li, G. Yang, Q. Zhang, H. Liang, F. Peng, Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells, Journal of Energy Chemistry2020, 44: 106-114.

  9. W. Li, Y. Li, H. Fu, G. Yang, Q. Zhang, S. Chen, F. Peng, Phosphorus doped Co9S8@CS as an excellent air-electrode catalyst for zinc-air batteries, Chemical Engineering Journal2020, 381: 122683

  10. Y. Li, Y. Tong, F. Peng, Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism, Journal of Energy Chemistry2020, 48: 308-321
  11. X. Cai, B. Qin, Y. Li, Q. Zhang, G. Yang, H. Wang, Y. Cao, H. Yu, F. Peng, Chlorine-Promoted Nitrogen and Sulfur Co-Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction, ChemElectroChem2020, 7 (1): 320-327.
  12. B. Qin, Q. Zhang, Y-H. Li, G. Yang, F. Peng, Formation of Lattice-Dislocated Zinc Oxide via Anodic Corrosion for Electrocatalytic CO2 Reduction to Syngas with a Potential-Dependent CO:H2 Ratio, ACS Applied Materials & Interfaces2020, 12 (27): 30466-30473
  13. B. Qin, Q. Zhang, Y. Li, G. Yang, H. Yu, F. Peng, Mechanistic Insights into the Electrochemical Reduction of CO2 on Cyclo18 carbon using Density Functional Theory Calculations, ChemElectroChem2020, 7 (8): 1838-1842.
  14. Y. Li, Z. Qiao, Y. Cao, H. Wang, H. Liang, H. Yu, F. Peng, Superoxide Decay Pathways in Oxygen Reduction Reaction on Carbon-Based Catalysts Evidenced by Theoretical Calculations, ChemSusChem2019,12(6): 1133-1138. 
  15. B. Qin, Y. Li, H. Wang, G. Yang, Y. Cao, H. Yu, Q. Zhang, H. Liang, F. Peng, Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies, Nano Energy, 2019, 60: 43-51.
  16. D.Y. Shen, Y. Liu, G.X. Yang, H. Yu, F. Peng, Mechanistic Insights into Cyclic Voltammograms on Pt (111): Kinetics Simulations, ChemPhysChem2019, 20 (21): 2791-2798.
  17. W. Li, H. Fu, Y. Cao, H. Wang, H. Yu, Z. Qiao, H. Liang, F. Peng, Mn3O4@C Nanoparticles Supported on Porous Carbon as Bifunctional Oxygen Electrodes and their Electrocatalytic Mechanism, ChemElectroChem2019, 6(2): 359-368
  18. Y. Shen, F. Peng, Y. Cao, J. Zou, H. Wang, H, Yu, Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media, Journal of Energy Chemistry, 2019, 34: 33-42
  19. H. Wang, Y. Song, Y. Cao, H. Yu, H. Liang, F. Peng, Facile synthesis of cobalt and nitrogen coordinated carbon nanotube as a high-performance electrocatalyst for oxygen reduction reaction in both acidic and alkaline media, ACS Sustainable Chemistry & Engineering2019, 7 (12): 10951-10961
  20. B. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu, F. Peng, Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst, ACS Applied Materials & Interfaces2018, 10(24): 20530-20539
  21. W. Li, Y. Li, H. Wang, Y. Cao, H. Yu, F. Peng, Co9S8-porous carbon spheres as bifunctional electrocatalysts with high activity and stability for oxygen reduction and evolution reactions, Electrochimica Acta2018, 265: 32-40
  22. G. Zhong, S. Li, S. Xu, W. Liao, X. Fu, F. Peng, Nickel Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanotubes as Excellent Bifunctional Oxygen Electrode for Fuel Cell and Metal-Air Battery, ACS Sustainable Chemistry & Engineering2018, 6(11): 15108-15118
  23. R. Lv, H. Wang, H. Yu, F. Peng, Controllable preparation of holey graphene and electrocatalytic performance for oxygen reduction reaction, Electrochimica Acta2017, 228: 203-213
  24. X. Wan, H. Wang, H. Yu, F. Peng, Highly uniform and monodisperse carbon nanospheres enriched with cobalt-nitrogen active sites as a potential oxygen reduction electrocatalyst, Journal of Power Sources2017, 346: 80-88
  25. S. Zhang, X. Wang, J. Hu, Z. Xie, H. Lei, F. Peng, Design of two kinds of branched TiO2 nano array photoanodes and their comparison of photoelectrochemical performances, Electrochimica Acta2017, 252: 368-373
  26. B. Qin, H. Wang, F. Peng, H. Yu, Y. Cao, Effect of the surface roughness of copper substrate on three-dimensional tin electrode for electrochemical reduction of CO2 into HCOOH, Journal of CO2 Utilization2017, 21: 219-223
  27. Y. Wu, L. Zhan, K. Huang, H. Wang, H. Yu, F. Peng, C. Lai, Iron based dual-metal oxides on graphene for lithium-ion batteries anode: Effects of composition and morphology, Journal of Alloys and Compounds2016, 684: 47-54
  28. G. Zhong, H. Wang, H. Yu, F. Peng, Chemically drilling carbon nanotubes for electrocatalytic oxygen reduction reaction, Electrochimica Acta2016, 190: 49-56
  29. Y. Fang, H. Wang, H. Yu, F. Peng. From chicken feather to nitrogen and sulfur co-doped large surface bio-carbon flocs: an efficient electrocatalyst for oxygen reduction reaction, Electrochimica Acta2016, 213: 273-282
  30. G. Zhong, H. Wang, H. Yu, F. Peng. Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media, Journal of Power Sources2015, 286: 495-503
  31. Y. Wu, Q. Shi, Y. Li, Z. Lai, H. Yu, H. Wang, F. Peng. Nitrogen-doped graphene-supported cobalt carbonitride@oxide core–shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction, Journal of Materials Chemistry A2015, 3: 1142-1151
  32. Y. Li, G. Zhong, H. Yu, H. Wang, F. Peng, O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations, Physical Chemistry Chemical Physics2015, 17: 21950-21959
  33.  X. Li, H. Wang, H.Yu, Z. Liu, H. Wang, F. Peng, Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells, Electrochimica Acta2015, 185: 178-183
  34. G. Zhong, H. Wang, H. Yu, F. Peng, The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction, Electrochemistry Communications, 2014, 40: 5-8
  35. X. Li, H. Wang, H. Yu, Z. Liu, F. Peng, An opposite change rule in carbon nanotubes supported platinum catalyst for methanol oxidation and oxygen reduction reactions, Journal of Power Sources2014, 260: 1-5
  36. Z. Liu, Q. Shi, R. Zhang, Q. Wang, G. Kang, F. Peng, Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells, Journal of Power Sources2014, 268: 171-175
  37. Q. Shi, F. Peng, S. Liao, H. Wang, H.Yu, B. Zhang, D. Su, Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media, Journal of Materials Chemistry A2013, 1 (47): 14853-14857
  38. G. Zhong, H. Wang, H. Yu, F. Peng, A novel carbon-encapsulated cobalt-tungsten carbide electrocatalyst for oxygen reduction reaction in alkaline media, Fuel Cells2013, 13(3): 387-391
  39. Z. Liu, Q. Shi, F. Peng, H. Wang, R. Zhang, H. Yu. Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells, Electrochemistry Communications2012, 16: 73-76
  40. Z. Liu, F. Peng, H. Wang, H. Yu, W. Zheng, X. Wei. Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O2 reduction, Journal of Natural Gas Chemistry2012, 21:257-264
  41. Z. Liu, Q. Shi, F. Peng, H. Wang, H. Yu, J. Li, X. Wei. Enhanced methanol oxidation activity of Pt catalyst supported on phosphorus-doped multiwalled carbon nanotubes in alkaline medium, Catalysis Communications2012, 22: 34-38
  42. Z. Liu, F. Peng, H. Wang, H. Yu, C. Chen, W. Zheng, Q. Shi. Design of Pt catalyst with high electrocatalytic activity and well tolerance to methanol for oxygen reduction in acidic medium, Catalysis Communications2012, 29: 11-14
  43. Z. Liu, F. Peng, H. Wang, H. Yu, W. Zheng, J. Yang. Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium, Angewandte Chemie-International Edition2011, 50: 3257-3261
  44. Z. Liu, F. Peng, H. Wang, H. Yu, J. Tan, L. Zhu. Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium, Catalysis Communications2011,16: 35-38
  45. C. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, and X. Fu. Facile preparation of an excellent Pt/RuO2-MnO2/CNTs nanocatalyst for anodes of direct methanol fuel cells, Fuel Cells2011, 11: 301-308
  46. C. Zhou, F. Peng, H. Wang, H. Yu, C. Peng, J. Yang. Development of stable PtRu catalyst coated with manganese dioxide for electrocatalytic oxidation of methanol, Electrochemistry Communications2010, 12: 1210-1213
  47. H. Wang, J. Liang, L. Zhu, F. Peng, H. Yu, J. Yang, High oxygen-reduction-activity and methanol-tolerance cathode catalyst Cu/PtFe/CNTs for direct methanol fuel cells, Fuel Cells2010, 10: 99-105

Photocatalysis


  1. F. Si, M. M. Wei, M. Li, X. Xie, Q. Gao, X. Cai, S. Zhang, F. Peng, Y. Fang, S. Yang, Natural light driven photovoltaic-electrolysis water splitting with 12.7% solar-to-hydrogen conversion efficiency using a two-electrode system grown with metal foam, Journal of Power Sources2022, 538: 231536
  2. Y. Liu, D. Shen, Q. Zhang, Y. Lin, F. Peng, Enhanced photocatalytic CO2 reduction in H2O vapor by atomically thin Bi2WO6 nanosheets with hydrophobic and nonpolar surface, Applied Catalysis B: Environmental2021, 283: 119630
  3. S. Yang, H. Guan, Y. Zhong, J. Quan, N. Luo, Q. Gao, Y. Xu, F. Peng, S. Zhang, Y. Fang, CdS@Ni3S2 for efficient and stable photo-assisted electrochemical (P-EC) overall water splitting, Chemical Engineering Journal2021, 405: 126231
  4. S. Chen, J. Liao, Z. Zhou, S. Yang, Q. Gao, X. Cai, F Peng, Y. Fang, S. Zhang, Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups, Applied Catalysis B: Environmental2021, 291: 120139
  5. Y. Lin, Q. Zhang, Y. Li, Y. Liu, K. Xu, J. Huang, X. Zhou, F. Peng, The Evolution from a Typical Type-I CdS/ZnS to Type-II and Z-Scheme Hybrid Structure for Efficient and Stable Hydrogen Production under Visible Light, ACS Sustainable Chemistry & Engineering2020, 8 (11): 4537-4546
  6. Y. Liu, Y. Li, Y. Lin, S. Yang, Q. Zhang, F. Peng, Theoretical calculations and controllable synthesis of MoSe2/CdS-CdSe with highly active sites for photocatalytic hydrogen evolution, Chemical Engineering Journal2020, 383: 123133
  7. Y. Liu, B. Wang, Q. Zhang, S. Yang, Y. Li, J. Zuo, H. Wang, F. Peng, A novel bicomponent Co3S4/Co@C cocatalyst on CdS accelerating charge separation for highly efficient photocatalytic hydrogen evolution, Green Chemistry2020, 22 (1): 238-247
  8. Y. Liu, Y. Li, X. Li, Q. Zhang, H. Yu, X. Peng, F. Peng, Regulating Electron-Hole Separation to Promote Photocatalytic H2 Evolution Activity of Nanoconfined Ru/MXene/TiO2 Catalysts, ACS Nano2020, 14: 14181-14189
  9. X. Yuan, D. Shen, Q. Zhang, G. Yang, B. Zhang, Y. Li, J. Zuo, F. Peng, Highly exposed (001) facets Ni(OH)2 induced formation of nickle phosphide over cadmium sulfide nanorods for efficient photocatalytic hydrogen evolution, International Journal of Hydrogen Energy2020, 45 (16): 9397-9407
  10. J. Huang, H. Wang, H. Yu, Q. Zhang, Y. Cao, F. Peng, Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution, ChemSusChem2020, 13: 5041-5049
  11. X. Yuan, D. Shen, Q. Zhang, H. Zou, Z. Liu, F. Peng, Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline, Chemical Engineering Journal, 2019, 369: 292-301
  12. J. Huang, Y. Cao, B. Qin, G. Zhong, J. Zhang, H. Yu, H. Wang, F. Peng, Highly efficient and acid-corrosion resistant nitrogen doped magnetic carbon nanotubes for the hexavalent chromium removal with subsequent reutilization, Chemical Engineering Journal2019, 361: 547-558
  13. Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, H. Wang, Y. Cao, H. Yu, 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution, Applied Catalysis B: Environmental2019, 241: 236-245
  14. H. Wang, N. Ma, Y. Cao, H. Yu, J. Zuo, W. Fan, F. Peng, Cobalt and cobalt oxide supported on nitrogen-doped porous carbon as electrode materials for hydrogen evolution reaction, International Journal of Hydrogen Energy2019, 44(7): 3649-3657
  15. R. Wang, S. Chen, Y.H. Ng, Q. Gao, S. Yang, S. Zhang, F. Peng, Y. Fang, S. Zhang, ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution, Chemical Engineering Journal2019, 362: 658-666
  16. S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chemical Society Reviews2019, 48: 4178-4280
  17. L. Chu, Y. Lin, Y. Liu, H. Wang, Q. Zhang, Y. Li, Y. Cao, H. Yu, F. Peng, Preparation of CdS-CoSx photocatalysts and their photocatalytic and photoelectrochemical characteristics for hydrogen production, International Journal of Hydrogen Energy2019, 44(51): 27795-27805
  18. S. Chen, G. Yang, C. Wang, S. Yang, D. Chen, X. Cai, Y. Li, F. Peng, Y. Fang, S. Zhang, Magnetic Fe3C@C nanoparticles as a novel cocatalyst for boosting visible-light-driven photocatalytic performance of g-C3N4, International Journal of Hydrogen Energy2019, 44 (49): 26970-26981
  19. J. Huang, Y. Cao, H. Wang, H. Yu, F. Peng, H. Zou, Z. Liu, Revealing active-site structure of porous nitrogen-defected carbon nitride for highly effective photocatalytic hydrogen evolution, Chemical Engineering Journal2019, 373: 687-699
  20. J. Hu, Y. Li, S. Zhang, Q. Zhang, Y. Liu, J. Zuo, Q. Li, F. Peng, MoS2 supported on hydrogenated TiO2 heterostructure film as photocathode for photoelectrochemical hydrogen production, International Journal of Hydrogen Energy2019, 44: 31008-31019
  21. Y. Liu, Y. Li, S. Yang, Y. Lin, J. Zuo, H. Liang, F. Peng, Revealing the Relationship between Photocatalytic Properties and Structure Characteristics of TiO2 Reduced by Hydrogen and Carbon Monoxide Treatment, ChemSusChem2018, 11(16): 2766-2775
  22. J. Hu, S. Zhang, Y. Cao, H. Wang, H. Yu, F. Peng, Novel Highly Active Anatase/Rutile TiO2 Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen, ACS Sustainable Chemistry & Engineering2018, 6(8): 10823-10832
  23. Y. Lin, Y. Liu, Y. Li, Y. Cao, J. Huang, H. Wang, H. Yu, H. Liang, F. Peng, Dual Functional CuO1–x Clusters for Enhanced Photocatalytic Activity and Stability of a Pt Cocatalyst in an Overall Water-Splitting Reaction, ACS Sustainable Chemistry & Engineering2018, 6(12): 17340-17351
  24. Y. Liu, S. Yang, S. Zhang, H. Wang, H. Yu, Y. Cao, F. Peng, Design of cocatalyst loading position for photocatalytic water splitting into hydrogen in electrolyte solutions, International Journal of Hydrogen Energy2018, 43(11): 5551-5560
  25. B. Wang, F. Peng, S. Yang, Y. Cao, H. Wang, H. Yu, S. Zhang, Hydrogenated CdS nanorods arrays/FTO film: A highly stable photocatalyst for photocatalytic H2 production, International Journal of Hydrogen Energy2018, 43(37): 17696-17707
  26. X. Yuan, X. Ma, J. Liao, F. Ye, L. Shao, F. Peng, J. Zhang, Low-pollution and controllable selective-area deposition of a CdS buffering layer on CIGS solar cells by a photochemical technique, ACS Sustainable Chemistry & Engineering2017, 5: 7325-7333
  27. X. Yuan, J. Yi, H. Wang, H. Yu, S. Zhang, F. Peng, New route of fabricating BiOI and Bi2O3 supported TiO2 nanotube arrays via the electrodeposition of bismuth nanoparticles for photocatalytic degradation of acid orange II, Materials Chemistry and Physics2017, 196: 237-44
  28. Y. Lin, S. Yang, Y. Liu, S. Zhang, H. Wang, H. Yu, F. Peng, In-situ photo-deposition CuO1-x cluster on TiO2 for enhanced photocatalytic H2 production activity, International Journal of Hydrogen Energy2017, 42: 19942-19950
  29. S. Yang, K. Xu, H. Wang, H. Yu, S. Zhang, F. Peng, Solution growth of peony-like copper hydroxyl-phosphate (Cu-2(OH)PO4) flowers on Cu foil and their photocatalytic activity under visible light, Materials and Design2016, 100: 30-36
  30. S. Yang, H. Wang, S. Zhang, Y. Fang, S. Zhang, F. Peng, A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light, International Journal of Hydrogen Energy2016, 41: 3446-3455
  31. X. Wang, S. Zhang, B. Peng, H. Wang, H. Yu, F. Peng, Enhancing the photocatalytic efficiency of TiO2 nanotube arrays for H2 production by using non-noble metal cobalt as co-catalyst, Materials Letters2016, 165: 37-40
  32. X. Wang, S. Zhang, Y. Xie, H. Wang, H. Yu, Y. Shen, Z. Li, S. Zhang, F. Peng,Branched hydrogenated TiO2 nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light, International Journal of Hydrogen Energy2016, 41: 20192-20197
  33. J. Yi, L. Huang, H. Wang, H. Yu, F. Peng, AgI/TiO2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity, Journal of Hazardous Materials2015, 284: 207-214
  34. J. Yi, X. Yuan, H. Wang, H. Yu, F. Peng. Preparation of Bi2Ti2O7/TiO2 nanocomposites and their photocatalytic performance under visible light irradiation, Materials and Design2015, 86: 152-156
  35. S. Zhang, B. Peng, S. Yang, H. Wanga, H. Yua, Y. Fang, F. Peng. Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light, International Journal of Hydrogen Energy2015, 40: 303-310
  36. S. Yang, S. Zhang, H. Wang, H. Yu, Y. Fang, F. Peng, Controlled preparation of Ag-Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light, Materials Research Bulletin2015, 70: 296-302
  37. S. Zhang, S. Zhang, B. Peng, H. Wang, H. Yu, H. Wang, F. Peng, High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light, Electrochemistry Communications2014, 40: 24-27
  38. B. Peng, S. Zhang, S. Yang, H. Wang, H. Yu, S. Zhang, F. Peng, Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation, Materials Research Bulletin2014, 56: 19-24
  39. J. Yi, S. Zhang, H. Wang, H. Yu, F. Peng, Fabrication of uniformly dispersed Ag nanoparticles loaded TiO2 nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation, Materials Research Bulletin2014, 60: 130-136
  40. S. Yang, S. Zhang, H. Wang, H. Yu, Y. Fang, F. Peng, Facile synthesis of self-assembled mesoporous CuO nanospheres and hollow Cu2O microspheres with excellent adsorption performance, RSC Advances2014, 4: 43024-43028
  41. Z. Lai, F. Peng, H. Wang, H. Yu, S. Zhang, H. Zhao. A new insight into regulating high energy facets of rutile TiO2, Journal of Materials Chemistry A2013, 1: 4182-4185
  42. S. Zhang, H. Wang, M. Yeung, Y. Fang, H. Yu, F. Peng, Cu(OH)2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production, International Journal of Hydrogen Energy2013, 38(18): 7241-7245
  43. S. Zhang, B. Peng, S. Yang, Y. Fang, F. Peng, Influence of the electrodeposition potential on the morphology of Cu2O/TiO2 nanotube arrays and their visible-light-driven photocatalytic activity for hydrogen evolution, International Journal of Hydrogen Energy2013, 38(32): 13866-13871
  44. Z. Lai, F. Peng, H. Wang, H. Yu, P. Liu, H. Zhao. Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces, Journal Materials Chemistry2012, 22: 23906-23912
  45. X. Zhou, F. Peng, H. Wang, H. Yu, Y. Fang, A simple preparation of nitrogen doped titanium dioxide nanocrystals with exposed (001) facets with high visible light activity, Chemical Communications2012, 48: 600-602
  46. X. Zhou, B. Jin, L. Li, F. Peng, H. Wang, H. Yu, Y. Fang, A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties, Journal Materials Chemistry2012, 22: 17900-17955
  47. X. Zhou, B. Jin, S. Zhang, H. Wang, H. Yu, F. Peng, Preparation of boron and phosphor co-doped TiO2 nanotube arrays and their photoelectrochemical property, Electrochemistry Communications2012, 19: 127-130
  48. S. Zhang, C. Liu, X. Liu, H. Zhang, P. Liu, S. Zhang, F. Peng, H. Zhao, Nanocrystal Cu2O-loaded TiO2 nanotube array films as high-performance visible-light bactericidal photocatalyst, Applied Microbiology Biotechnology2012, 96: 1201-1207
  49. S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, J. Yang, H. Zhao. Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance, Catalysis Communications2011, 12: 689-693
  50. S. Zhang, F. Peng, H. Zhang, H. Liu, H. Zhao, Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance, Electrochemical Communications2011, 13: 861-863
  51. X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances, Electrochemistry Communications, 2011,13: 121-124
  52. X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B, N-doped TiO2Journal of Solid State Chemistry2011, 184: 134-140
  53. X. Zhou, F. Peng, H. Wang, H. Yu, Y. Fang, Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance, Chemical Communications2011, 47: 10323-10325
  54. X. Zhou, F. Peng, H. Wang, H. Yu, Boron and nitrogen-codoped TiO2 nanorods: Synthesis, characterization, and photoelectrochemical properties. Journal of Solid State Chemistry2011, 184: 3002-3007
  55. X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2, Materials Research Bulletin2011, 46: 840-844
  56. L. Huang, F. Peng, H. Wang, H. Yu, W. Geng, J. Yang, S. Zhang, H. Zhao. Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by electrochemical deposition, Materials Chemistry and Physics, 2011,130: 316-322
  57. L. Huang, F. Peng, H. Yu, H. Wang, J. Yang, Z. Li. The influence of ultrasound on the formation of TiO2 nanotube arrays, Materials Research Bulletin2010, 45, 200-204
  58. L. Huang, S. Zhang, F. Peng, H. Wang, H. Yu, J. Yang, S. Zhang and H. Zhao. Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photocatalysis. Scripta Materialia2010, 63: 159-161


Thermal catalysis


  1. Y. Deng, Z. Chen, J. Huang, G. Yang, Q. Zhang, Z. Liu, Y. Cao, F. Peng, MnO2 nanoparticles supported on CNTs for cumene oxidation: Synergistic effect and kinetic modelling, Chemical Engineering Journal, 2022, 444: 136666

  2. Y. Su, Z. Chen, J. Huang, H. Wang, H. Yu, Q. Zhang, Y. Cao, F. Peng, Confined Cobalt on Carbon Nanotubes in Solvent-free Aerobic Oxidation of Ethylbenzene: Enhanced Interfacial Charge Transfer, ChemCatChem, 2022, 14(2): e202101378

  3. Z. Chen, Y. Li, Y. Cao, Q. Zhang, H. Yu, F. Peng, Inhibitory effect of Zn2+ on the chain-initiation process of cumene oxidation, International Journal of Quantum Chemistry2021, 121, e26780.

  4. J. Bai, J. Huang, Q. Jiang, Y. Li, H. Wang, H. Yu, Q. Zhang, Y. Cao, F. Peng, Radical Propagation Facilitating Aerobic Oxidation of Substituted Aromatics Promoted by Tert-Butyl Hydroperoxide, Chemistryselect2021, 6, 6895-6903.

  5. Y. Su, Y. Li, Z. Chen, J. Huang, H. Wang, H. Yu, Y. Cao, F. Peng, New Understanding of Selective Aerobic Oxidation of Ethylbenzene Catalyzed by Nitrogen-doped Carbon Nanotubes, ChemCatChem2021, 13, 646-655

  6. H. Fu, K. Huang, G. Yang, Y. Cao, H. Wang, F. Peng, Q. Wang, H. Yu, Synergistic Effect of Nitrogen Dopants on Carbon Nanotubes on the Catalytic Selective Epoxidation of Styrene, ACS Catalysis2020, 10 (1): 129-137

  7. X. Ning, Y. Li, J. Ming, Q. Wang, H. Wang, Y. Cao, F. Peng, Y. Yang, H. Yu, Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction, Chemical Science2019, 10(6): 1589-1596

  8. Z. He, B. Dong, W. Wang, G. Yang, Y. Cao, H. Wang, Y. Yang, Q. Wang, F. Peng, H. Yu, Elucidating Interaction between Palladium and N-Doped Carbon Nanotubes: Effect of Electronic Property on Activity for Nitrobenzene Hydrogenation, ACS Catalysis2019, 9(4): 2893-2901

  9. Z. Meng, Y. Liu, G.X. Yang, Y.H. Cao, H.J. Wang, F. Peng, P.F. Liu, H. Yu, Electron-Rich Ruthenium on Nitrogen-Doped Carbons Promoting Levulinic Acid Hydrogenation to gamma-valerolactone: Effect of Metal-Support Interaction, ACS Sustainable Chemistry & Engineering2019, 7 (19): 16501-16510

  10. K. Huang, H. Fu, W. Shi, H. Wang, Y. Cao, G. Yang, F. Peng, Q. Wang, Z. Liu, B. Zhang, H. Yu, Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co-N-C, Journal of Catalysis2019, 377: 283-292

  11. Y. Su, D. Chen, S. Yang, S. Zhang, Y. Liu, Y. Fang, Q. Zhang, F. Peng, Photoelectrochemical detection of ultra-trace fluorine ion using TiO2 nanorod arrays as a probe, RSC Advances2019, 9: 26712-2671

  12. D. Su, G. Wen, S. Wu, F. Peng, R. Schlogl, Carbocatalysis in liquid-phase reactions, Angewandte Chemie-International Edition2017, 56: 936-964

  13. X. Ning, Y. Li, H. Yu, F. Peng, H. Wang, Y. Yang, Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone, Journal of Catalysis2016, 335: 95-104

  14. C. Dang, H. Yu, H. Wang, F. Peng, Y. Yang, A bi-functional Co-CaO-Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen, Chemical Engineering Journal, 2016, 286: 329-338

  15. Y. Chi, M. Zhu, Y. Li, H. Yu, H. Wang, F. Peng, The effect of surface oxygenated groups of carbon nanotubes on liquid phase catalytic oxidation of cumene, Catalysis Science & Technology2016, 6: 2396-2402

  16. H. Wang, C. Peng, F. Peng, H. Yu, J. Yang. Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors, Materials Science and Engineering B2011, 176: 1073-1078

  17. Z. Yao, Z. Lai, X. Zhang, F. Peng, H. Yu, H. Wang. Structural stability and mutual transformations of molybdenum carbide, nitride and phosphide, Materials Research Bulletin2011, 46: 1938-1941

  18. Z. Yao, X. Zhang, F. Peng, H. Yu, H. Wang, J. Yang. A novel carbothermal reduction nitridation route to MoN nanoparticles on CNTs support, Journal of Materials Chemistry, 2011, 21: 6898-6902

  19. Z. Yao, X. Zhang, F. Peng, H. Yu, H. Wang, J. Yang. Novel highly efficient alumina-supported cobalt nitride catalyst for preferential CO oxidation at high temperatures, International Journal of Hydrogen Energy2011, 36: 1955-1959

  20. H. Yu, F. Peng, J. Tan, X. Hu, H. Wang, J. Yang, W. Zheng. Selective Catalysis of the Aerobic Oxidation of Cyclohexane in the Liquid Phase by Carbon Nanotubes, Angewandte Chemie-International Edition2011, 50: 3978-3982

  21. G. Yang, H. Yu, F. Peng, H. Wang, J. ang, D. Xie. Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol, Renewable Energy2011, 36: 2120-2127

  22. J. Luo, F. Peng, H. Yu, H. Wang. Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes, Chemical Engineering Journal2012, 204-206: 98-106

  23. G. Yang, H. Yu, X. Huang, F. Peng, H. Wang, Effect of calcium dopant on catalysis of Ir/La2O3 for hydrogen production by oxidative steam reforming of glycerol. Applied Catalysis B: Environmental2012, 127: 89-98

  24. H. Chen, H. Yu, J. Li, F. Peng, H. Wang, Effect of inlet flow distributor for reagent equalization on autothermal reforming of ethanol in a microreformer, Industrial & Engineering Chemistry Research2012, 51: 10132-10139

  25. X. Yang, H. Yu, F. Peng, H. Wang. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane, ChemSusChem2012, 5: 1213-1217

  26. X. Yang, H. Wang, J. Li, W. Zheng, R. Xiang, Z. Tang, H. Yu, F. Peng. Mechanistic insight into catalytic oxidation of cyclohexane over carbon nanotubes: kinetics and in-situ spectroscopic evidences, Chemistry A-European Journal2013, 19: 9818-9824

  27. Y. Cao, X. Luo, H. Yu, F. Peng, H. Wang, G. Ning, sp(2)- and sp(3) -hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane, Catalysis Science & Technology2013, 3(10): 2654-2660

  28. Y. Cao, H. Yu, J. Tan, F. Peng, H. Wang, J. Li, W. Zheng, N. Wong, Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane, Carbon2013, 57: 433-442

  29. C. Chen, J. Zhang, F. Peng, D. Su. Efficient functionalization of multi-walled carbon nanotubes by nitrogen dioxide, Materials Research Bulletin2013,48: 3218-3222

  30. C. Chen, J. Zhang, B. Zhang, C. Yu, F. Peng, D. Su. Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane, Chemical Communications2013,49(74): 815-818

  31. J. Luo, F. Peng, H. Wang, H. Yu, Enhancing the catalytic activity of carbon nanotubes by nitrogen doping in the selective liquid phase oxidation of benzyl alcohol, Catalysis Communications2013, 39(1): 44-49

  32. J. Luo, F. Peng, H. Yu, H. Wang, W. Zheng, Aerobic liquid-phase oxidation of ethylbenzene to acetophenone catalyzed by carbon nanotubes, ChemCatChem, 2013, 5: 1578-1586

  33. J. Luo, H. Yu, H. Wang, F. Peng, Enhancing the catalytic activity of carbon nanotubes by filled iron nanowires for selective oxidation of ethylbenzene, Catalysis Communications2014, 51: 77-81

  34. Y. Wu, H. Yu, H. Wang, F. Peng, Controllable synthesis and catalytic performance of graphene-supported metal oxide nanoparticles, Chinese Journal of Catalysis2014, 35: 952-959

  35. Y. Cao, H. Yu, F. Peng, H. Wang, Selective Allylic Oxidation of Cyclohexene Catalyzed by Nitrogen-Doped Carbon Nanotubes, ACS Catalysis2014, 4: 1617-1625

  36. S. Liao, F. Peng, H. Yu, H. Wang, Carbon nanotubes as catalyst for the aerobic oxidation of cumene tocumene hydroperoxide, Applied Catalysis A: General2014, 478: 1-8

  37. S. Liao, Y. Chi, H. Yu, H. Wang, F. Peng, Tuning the Selectivity in the Aerobic Oxidation of Cumene Catalyzed by Nitrogen-Doped Carbon Nanotubes, ChemCatChem2014, 6: 555-560

  38. J. Luo, H. Yu, H. Wang, H. Wang, F. Peng, Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter, Chemical Engineering Journal2014, 240: 434-442

  39. Y. Cao, Y. Li, H. Yu, F. Peng, H. Wang, Aerobic oxidation of α-pinene catalyzed by carbon nanotubes, Catalysis Science & Technology2015, 5: 3935-3944