7149
当前位置: 首页   >  课题组新闻   >  恭喜崔力同学的论文在Nanoscale发表
恭喜崔力同学的论文在Nanoscale发表
发布时间:2025-01-15

近日,2022级硕士生崔力在生物模板合成金属氧化物-沸石复合催化剂用于甘油氧化制备1,3-二羟基丙酮(DHA)领域取得新进展,相关研究成果以“Manipulating the Interfacial Integration mode of Bio-templated Porous ZSM-5 Platform with Au/CuZnOx Catalyst for Enhanced Efficiency and Recycling Stability in Glycerol Conversion to 1,3-dihydroxyacetone”为题在线发表在《Nanosacle》期刊(Nanoscale, 2025,17, 5259-5269;IF=5.80JCR一区)。这是课题组在该领域发表的又一重要成果。

甘油氧化制备1,3-二羟基丙酮(DHA)是一种具有重要工业应用价值的反应。然而,目前的研究面临着催化剂活性与循环稳定性难以兼得的挑战。课题组基于前期研究成果(New J. Chem., 2024, 48, 19206; Nanotechnology, 2023, 34, 365713),在本研究中创新性地提出通过调控沸石与金属氧化物的界面结合方式来优化催化性能。采用生物模板法,以玉米秸秆为模板制备多孔ZSM-5bio-ZSM-5)平台,并与Au/CuZnOx催化剂通过三种结合策略(物理研磨、包裹和原位生长)制备复合催化剂(如Scheme 1所示)。其中,通过物理研磨法制备的Au/CuZnOx@bZ催化剂表现出优异的催化性能,其甘油转化率达到93%DHA选择性为86%,并在五次循环后仍保持72%以上的活性和选择性。

Scheme 1. (a) Preparation process of metal oxide-zeolite with different combining methods. (b) Comparison of glycerol selective oxidation performance.

实验表征显示,不同结合方式对催化剂的界面效应、Au纳米粒子的分散性和表面氧化物种类有显著影响。通过H2-TPRXPS等表征表明,物理研磨法提高了催化剂表面Au+物种比例,降低了反应所需的还原温度,从而增强了催化性能。此外,生物模板的引入有效防止了循环过程中Au纳米粒子的团聚,显著提升了催化剂的循环稳定性。本研究为设计高活性、长寿命甘油氧化催化剂提供了新思路,同时拓展了沸石与金属氧化物界面调控在催化领域的应用前景。

本研究工作得到了课题组刘海老师、袁振老师的悉心指导。

 

图文解析

通过优化双金属载体的金属比例,筛选出甘油仲羟基氧化性能最优的催化剂Au/CuZnOxxCu/Zn的摩尔比)。

Figure 1. (a) XRD spectra of different ratios of supports. (b) H2-TPR spectra of different ratios of supports. (c) Selective oxidative properties of glycerol with different ratios of gold-based oxides (experimental conditions: 30 ml of aqueous glycerol (0.105 M), glycerol/Au=100 mol/mol 80 °C, 2 h). (d) Schematic diagram of various catalysts.

负载型金属氧化物-沸石复合催化剂的合成和几何结构的分析。

Figure 2. XRD patterns analysis of different catalysts and zeolites (a). Nitrogen absorption−desorption isotherm curve (b) and pore size analysis (c) of composite catalysts prepared by different binding strategies. TEM spectral analyses: Au/CuZnOx (d) Au/CuZnOx@bZ (e); Au/(CuZnOx-in-bZ) (f and g); (Au/CuZnOx)-in-bZ (h and i); Au/CuZnOx/bZ (j and k). HRTEM image of Au/CuZnOx@bZ.TEM image (m) and EDS spectra (n) of catalyst Au/CuZnOx@bZ. Structural modelling of zeolite-Au-based oxides with different binding modes (o).

复合催化剂表面化学性质的分析。

Figure 3. Au 4f and O 1s spectra of the Catalysts with different binding modes (a-h). O2-TPD spectra of catalysts with different binding modes (i).

Figure 4. Analysis of (a) H2-TPR and (b) NH3-TPD for the preparation of composite catalysts with different binding strategies.

甘油仲羟基氧化活性分析和循环稳定性分析,并将性能最好的催化剂和近两年来甘油仲羟基氧化相似条件下不同催化剂循环稳定性性能的对比。

Figure 5 (a) Catalytic properties of glycerol with different catalysts. (b) Cycling performance of Au/CuZnOx@bZ catalysts. (c) The performance of the Au/CuZnOx@bZ catalysts after five cycles is compared with the performance of the fourth or fifth cycle in recent years.