278722
当前位置: 首页   >  课题组新闻   >  课题组机器学习AI for Science文章
课题组机器学习AI for Science文章
发布时间:2025-05-20

- K. Han, J. F. Li, Z. S. Zhang, C. L. Wang*, J. B. Li*, Y. Zhu, Z. J. Zhu, X. J. Liu, G. Yang, L. K. Pan*, Chemical Engineering Journal DOI: 10.1016/j.cej.2025.170251, Rapidly Evaluating Electrochemical Performance of Transition Metal Disulfides for Lithium Ion Batteries Using Machine Learning Classifier

- G. S. Xu, Y. Li, J. F. Li, J. L. Li*, X. J. Liu, C. L. Wang*, W. J. Mai, G. Yang, L. K. Pan*, Angewandte Chemie International Edition 64, e202511389 (2025), Toward Stable Zinc Anode: An AI-Assisted High-Throughput Screening of Electrolyte Additives for Aqueous Zinc-ion Battery

- Y. Y. Chen, Z. L. Yang, J. X. Wang, K. Han, Z. J. Zhu, C. L. Wang*, M. Xu*, G. Yang, L. K. Pan*, Nanoscale 17, 22890-22897 (2025)A Data-Driven Machine Learning Approach for Predictive Modeling of Transition Metal Dichalcogenide/Carbon Composite Supercapacitor Electrodes

H. Wang Y. Zhu, K. Han, C. L. Wang*, J. F. Li, Y. Q. Li Y. Liu*, G. Yang, L. K. Pan*, Journal of Materials Chemistry A 13, 32427-32437 (2025), A Data-driven Machine Learning Approach for Interpretable Predicting Desalination Stability of Carbon Materials for Capacitive Deionization

- H. Wang, C. L. Wang*, J. F. Li, Y. Q. Li, Y. Liu*, Z. Q. Chen, X. J. Liu, G. Yang, L. K. Pan*, Separation and Purification Technology 376, 134181 (2025), A Data-driven Machine Learning Approach to Predict Desalination Capacities of Faradic Materials for Capacitive Deionization

- Y. Y. Chen, H. Wang, C. L. Wang*, J. Q. Yang, X. J. Liu, Y. C. Ma, Y. F. Yao, G. Yang, M. Xu*, L. K. Pan*, Journal of Colloid and Interface Science 699, 138139 (2025), Machine Learning-Guided Prediction of Energy Storage Performance of Carbon Cathode Materials for Zinc-Ion Hybrid Capacitors

- F. Y. Meng, H. Wang, X. Y. Xuan, Y. Liu*, Y. Q. Li, X. T. Xu*, L. K. Pan*, Materials Horizons 12, 8181-8193 (2025)Chloride ion-capturing La0.7Sr0.3BO3 (B=Fe, Co) perovskite oxide achieving superior performance electrochemical desalination

- G. Bai, Z. H. Wang, H. Wang, C. L. Wang*, X. J. Liu, H. B. Li, G. Yang, M. Xu*, L. K. Pan*, Separation and Purification Technology 373, 133627 (2025), Machine Learning-Guided Exploration of Carbon-Based Photothermal Materials for Solar Evaporation

- H. Wang, Y. Zhu, J. L. Li*, X. J. Liu, Y. C. Ma, Y. F. Yao, J. Zhang*, L. K. Pan*, Journal of Materials Chemistry A 13, 17197-17213 (2025), Machine Learning-Accelerated Exploration on Element Doping-Triggering Material Performance Improvement for Energy Conversion and Storage Applications

- S. H. Fan, Y. Gao*, M. Wu, X. J. Liu*, J. W. Li, L. K. Pan*, F. Z. Xuan*, ACS Applied Nano Materials 8, 10013-10021 (2025), Machine Learning-Assisted Design of Transition Metal-Doped Cobalt Phosphide Electrocatalysts for Hydrogen Evolution

- H. Wang, Y. Q. Li, X. Y. Xuan*, K. Wang*, Y. F. Yao, L. K. Pan*, Environmental Science & Technology 59, 6361-6378 (2025), Machine Learning Accelerated Discovery of Covalent Organic Frameworks for Environmental and Energy Applications

H. Wang, Y. Q. Li, Y. Liu*, X. T. Xu, T. Lu*, L. K. Pan*, Separation and Purification Technology 354, 129423 (2025), Advancement of capacitive deionization propelled by machine learning approach

Y. M. Yang, K. Han, J. T. Li, T. Zhang, Z. J. Zhu, L. Su, Z. Y. Han, C. Y. Xu, Y. Lu, L. K. Pan, T. Yang, BMC Pulmonary Medicine 25, 123 (2025), A clinical data-driven machine learning approach for predicting the effectiveness of piperacillin-tazobactam in treating lower respiratory tract infections

- G. S. Xu, M. X. Jiang, J. L. Li*, X. Y. Xuan*, J. B. Li, T. Lu, L. K. Pan*, Energy Storage Materials 72, 103710 (2024), Machine learning-accelerated discovery and design of electrode materials and electrolytes for lithium ion batteries

- H. Wang, M. X. Jiang, G. S. Xu, C. L. Wang*, X. T. Xu, Y. Liu*, Y. Q. Li, T. Lu, G. Yang, L. K. Pan*, Small 20, 2401214 (2024), Machine learning-guided prediction of desalination capacity and rate of porous carbons for capacitive deionization

- M. X. Jiang, Z. H. Yang, T. Lu, X. J. Liu*, J. B. Li, C. L. Wang*, G. Yang, L. K. Pan*, Ceramics International 50, 1079-1086 (2024), Machine Learning Accelerated Study for Predicting the Lattice Constant and Substitution Energy of Metal Doped Titanium Dioxide

- G. S. Xu, Y. J. Zhang, M. X. Jiang, J. L. Li*, H. C. Sun, J. B. Li, T. Lu, C. L. Wang*, G. Yang, L. K. Pan*, Chemical Engineering Journal 476, 146676 (2023), A Machine Learning-Assisted Study on Organic Solvents in Electrolytes for Expanding the Electrochemical Stable Window of Zinc-Ion Batteries

- M. X. Jiang, Y. J. Zhang, Z. H. Yang, H. B. Li, J. L. Li, J. B. Li, T. Lu, C. L. Wang*, G. Yang*, L. K. Pan*, Inorganic Chemistry Frontiers 10, 6646 (2023), A Data-driven Interpretable Method to Predict Capacities of Metal ion Doped TiO2 Anode Materials for Lithium-ion Batteries Using Machine Learning Classifiers