山东省优青,泰山学者青年专家,物理化学学报青年编委,JMCA Emerging Investigators,青岛大学二层次特聘教授,2020年入职青岛大学,主持国家自然科学基金面上项目(2项)、青年项目,作为研究骨干参加国家重点研发计划。主要从事有机光电材料与器件的研究,如有机太阳能电池关键材料、钙钛矿太阳能电池空穴传输材料等,开发了多种非富勒烯受体材料,共轭聚合物给体材料等,做出了系列原创性的科研工作,受到领域的广泛关注。
代表性成果1:非稠环电子受体材料
2017年首次提出运用分子内非共价键代替共价键构筑电子受体材料,运用该设计理念,申请人成功开发了系列兼具低成本和高性能的电子受体材料,引领了受体材料的创新。通过精细的分子设计,调控受体分子的空间位阻及聚集方式,提出了空间位阻诱导的高性能平面型非稠环电子受体的设计理念。此外,将三芳胺单元引入到非稠环电子受体的设计中,获得了具有三维堆积方式的非稠环受体。基于以上系统的研究工作,将非稠环受体材料的光电转换效率推进至超过了19%,能够与稠环电子受体想媲美,引领了该领域的发展。
代表性成果2:聚合物给体材料
围绕富勒烯受体和非富勒烯受体,本人开发了系列高性能的聚合物给体材料。提出了氟酯协同、D-D型分子骨架,C2V对称性单元构筑等分子设计理念。
代表性成果3:高性能器件构筑
提出了系列高性能器件构筑方法,包括高分子量聚合物加工策略、超分子添加剂、多维尺度形貌构筑等,并探索有机太阳能电池的多功能应用,如半透明电池,柔性器件,钙钛矿/有机叠层太阳能电池等。
代表性成果4:有机太阳能电池机制研究(能量损失)
明晰了分子结构与器件性能尤其是非辐射能量损失的关系,设计了一系列低能损的非富勒烯受体材料,实现了有机太阳能电池性能突破,为设计新一代材料提供了借鉴。
至今以第一/通讯作者发表SCI论文80余篇,包括Acc. Chem. Res., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Joule, Energy Environ. Sci., Sci. China Chem., Adv. Energy Mater., ACS Energy Lett., Chem. Mater., Macromolecules等高水平论文。
第一/通讯作者代表性论文:
Acc. Chem. Res. 2024, 57, 3419−3432. https://doi.org/10.1021/acs.accounts.4c00592
J. Am. Chem. Soc., 2017, 139: 3356-3359. https://pubs.acs.org/doi/10.1021/jacs.7b00566
Adv. Mater., 2022, 34: 2105483. https://onlinelibrary.wiley.com/doi/10.1002/adma.202105483
Adv. Mater. 2024, 36, 2307292. https://onlinelibrary.wiley.com/doi/10.1002/adma.202307292
Adv. Mater. 2024, 36, 2310362. https://doi.org/10.1002/adma.202310362
Adv. Mater. 2024, 36, 2408934. https://doi.org/10.1002/adma.202408934
Adv. Mater. 2025, 2507529. https://doi.org/10.1002/adma.202507529
Adv. Mater. 2025, e08611. https://doi.org/10.1002/adma.202508611
Adv. Mater. 2025, e16146. https://doi.org/10.1002/adma.202516146
Angew. Chem. Int. Ed. 2024, e202407007.https://doi.org/10.1002/anie.202407007
Angew. Chem. Int. Ed. 2024, e202412854. https://doi.org/10.1002/anie.202412854
Angew. Chem. Int. Ed. 2023, e202314420. https://onlinelibrary.wiley.com/doi/10.1002/anie.202314420
Angew. Chem. Int. Ed., 2020, 59: 22714-22720. https://onlinelibrary.wiley.com/doi/10.1002/anie.202010856
Joule, 2025, 9, 101996. https://doi.org/10.1016/j.joule.2025.101996
Energy Environ. Sci., 2025, 18, 2298. https://doi.org/10.1039/D4EE05375C
Nat. Sci. Rev., 2024, 11, nwae258. https://doi.org/10.1093/nsr/nwae258
Adv. Energy Mater. 2025, 2502316. https://doi.org/10.1002/aenm.202502316
Adv. Energy Mater. 2025, e04947. https://doi.org/10.1002/aenm.202504947
Adv. Energy Mater. 2023, 2302554. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202302554
Adv. Energy Mater. 2023, 13, 2302063. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202302063
Adv. Energy Mater., 2021, 11: 2102591. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202102591
Adv. Energy Mater., 2019, 9: 1901280. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201901280
Adv. Energy Mater., 2022, 2104028. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202104028
CCS Chem. 2024, 6, 1757–1766. https://doi.org/10.31635/ccschem.023.202303239
CCS Chem. 2024, 6, 1–11. https://doi.org/10.31635/ccschem.024.202404722
Aggregate. 2023;e469. https://doi.org/10.1002/agt2.469
Cell Reports Physical Science 2022, 3, 101169. https://doi.org/10.1016/j.xcrp.2022.101169
Adv. Funct. Mater., 2023, 33: 2301866. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202301866
Adv. Funct. Mater. 2024, 2415468. https://doi.org/10.1002/adfm.202415468
Adv. Funct. Mater. 2022, 32, 2203193. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202203193
Adv. Funct. Mater. 2024, 34, 2406744. https://doi.org/10.1002/adfm.202406744
Adv. Funct. Mater. 2024, 2416356. https://doi.org/10.1002/adfm.202416356
Adv. Funct. Mater. 2024, 2417478. https://doi.org/10.1002/adfm.202417478
Adv. Funct. Mater. 2025, 2507288. https://doi.org/10.1002/adfm.202507288
Adv. Funct. Mater. 2025, 2424978. https://doi.org/10.1002/adfm.202424978
ACS Energy Lett. 2022, 7, 3927. https://pubs.acs.org/doi/10.1021/acsenergylett.2c02000
ACS Energy Lett., 2018, 3: 1832-1839. https://pubs.acs.org/doi/10.1021/acsenergylett.8b00928
Chem. Mater., 2018, 30: 4307-4312. https://pubs.acs.org/doi/10.1021/acs.chemmater.8b01319
Chem. Mater. 2022, 34, 8840-8848. https://doi.org/10.1021/acs.chemmater.2c02146
Macromolecules, 2018, 51: 8646-8651. https://pubs.acs.org/doi/10.1021/acs.macromol.8b01677
Sci. China Chem., 2022, 65: 224-268. https://doi.org/10.1007/s11426-021-1180-6
Sci China Chem, 2022, 65: 1457–1497. https://doi.org/10.1007/s11426-022-1256-8
Sci. China Chem., 2022, 65:594-601. https://doi.org/10.1007/s11426-021-1159-y
Chin. J. Chem. 2023, 41, 665—671. https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202200673
J. Mater. Chem. A, 2020, 8: 2123-2130. https://doi.org/10.1039/C9TA12029G
J. Mater. Chem. A, 2020, 8: 12495-12501. https://doi.org/10.1039/D0TA03683H
Mater. Horiz., 2024,11, 6019-6027. https://doi.org/10.1039/D4MH01113A
ACS Applied Materials & Interfaces, 2021, 13: 39652-39659. https://doi.org/10.1021/acsami.1c09597
Chemical Engineering Journal, 2022, 435: 134987. https://doi.org/10.1016/j.cej.2022.134987
Chemical Engineering Journal 2024, 500, 156906. https://doi.org/10.1016/j.cej.2024.156906
综述论文:
- Sci. China Chem., 2022, 65: 224-268. https://doi.org/10.1007/s11426-021-1180-6
- Sci China Chem, 2022, 65: 1457–1497. https://doi.org/10.1007/s11426-022-1256-8
- ChemSusChem 2024, e202402169. https://doi.org/10.1002/cssc.202402169
- Acc. Chem. Res. 2024, 57, 3419−3432. https://doi.org/10.1021/acs.accounts.4c00592
- Chem. Commun., 2021, 57, 302--314. https://doi.org/10.1039/D0CC07086F