77324
当前位置: 首页   >  课题组新闻   >  课题组研究介孔CuCe/SiO2催化剂载体结构对CH4/CO2重整性能的影响取得进展
课题组研究介孔CuCe/SiO2催化剂载体结构对CH4/CO2重整性能的影响取得进展
发布时间:2025-07-01

CO2作为一种廉价而丰富的C1资源,可以通过RWGS反应转化为重要的基础化工原料CO。目前,开发低温高效的RWGS催化剂是实现CO2资源化利用的关键。本文制备了具有相同孔形状和不同孔径的介孔SiO2,并将其用作载体制得介孔CuCe/SiO2催化剂,研究了CuCe/SiO2CO2加氢性能。通过N2吸附/脱附、TEM/HTEMH2-TPRH2-TPDCO2-TPD、小角XRDXRDICPN2O化学吸附等,研究了制得的CuCe/SiO2催化剂的物理化学性质,并建立了所研究催化剂的物理物理化学性质与RWGS催化反应性能之间的关系。研究发现,孔径对RWGS性能有显著影响,载体SiO2大的比表面积和发达的介孔结构能显著促进了CuCe组分的高度分散。从而促进了活性中心在催化剂表面形成,并增强了吸附和活化反应物分子的能力。制备的CCS100催化剂具有优异的孔结构、大比表面积、高有序性、活性金属物种的良好分散性,以及对反应物H2CO2分子的优异吸附/活化能力,从而具有良好的催化RWGS性能。在常压和420 °C的反应温度下,CCS100催化剂的CO2转化率和CO选择性分别达到41.34%100%,并表现出良好的CO2加氢循环使用性能。

 

Hongmei Xie (谢红梅), Shan Zhao, Liu Ouyang, Jia Zeng, Shuang Chen*, Guilin Zhou*. Design of supported CuCe catalysts with optimal pore size to promote low-temperature RWGS reactions [J]. International Journal of Hydrogen Energy, 2025, 144: 469–481. https://doi.org/10.1016/j.ijhydene.2025.06.030.

 

CO2, as a cheap and abundant C1 resource, can be converted to an important basic chemical raw material CO through the RWGS reaction. Currently, the development of a catalyst with low-temperature and high-efficiency of RWGS is the key to achieving CO2 resource utilization. In this paper, mesoporous SiO2 with the same pore shape and different pore diameters were prepared and used as support to investigate the CO2 hydrogenation performance over CuCe/SiO2. The physicochemical properties of the prepared CuCe/SiO2 catalysts were investigated by using N2 adsorption/desorption, TEM/HRTEM, H2-TPR, H2-TPD, CO2-TPD, low-angle XRD, XRD, ICP, and N2O chemisorption, and the correlation between the physicochemical properties of the studied catalysts and the catalytic RWGS performances was established. It was found that the pore size had a significant effect on the RWGS performances, and the large specific surface area and well-developed mesoporous structure of the support SiO2 significantly promoted the high dispersion of the Cu and Ce components. This promotes the active centers to be formed on the catalyst surface and enhances the ability to adsorb and activate reactant molecules. The prepared CCS100 catalyst possesses a superior pore structure, large specific surface area, high ordering, good dispersion of active metal species, and superior adsorption/activation ability for reactant molecules, which results in good catalytic RWGS performances. At atmospheric pressure and a reaction temperature of 420 °C, the CO2 conversion and CO selectivity were achieved 41.34 % and 100 % over the CCS100 catalyst, respectively, and showed good CO2 hydrogenation recycling performance.