3427
当前位置: 首页   >  课题组新闻   >  JACS Au:不对称表面微量H₂O₂驱动水自净力扩增
JACS Au:不对称表面微量H₂O₂驱动水自净力扩增
发布时间:2025-09-01

研究背景

自然水环境的自净作用主要依靠溶解氧(DO)等内源共存物质与污染物之间的相互作用和传质过程。由于内源性物质的惰性和相互作用的无序性导致了极长的自然自净周期,对于一些污染物的去除甚至需要数十年到上百年时间。常规技术通过大量外加氧化剂和能耗输入去实现这类污染物的快速降解已是工业界迫不得已的选择,严重制约了联合国“清洁水”可持续发展目标的实现,因此亟需创新技术突破这一瓶颈。

研究内容

针对上述科学挑战,吕来教授课题组在前期开发的双反应中心(DRC)水处理技术基础上,首次创新性地提出“水自净扩增理论与技术”,通过设计不对称表面纳米催化剂,在微量H2O2的触发下成功突破惰性端口效应以及通道阻塞效应,极大地加快了污染物与惰性溶解氧之间的传质过程。核心突破在于通过催化剂表面电子极化分布,动态调节污染物分子与DO的相互作用通道,显著降低化学键断裂的活化能垒,从而减少传统高级氧化技术对外部能量和氧化剂(如H2O2)的依赖,并实现水自净力的“扩增”。相关工作在JACS Au期刊发表了名为H2OTriggering Electron-Directed Transfer of Emerging Contaminants over Asymmetric Nano Zinc Oxide Surfaces for Water Self-Purification Expansion的研究论文。

构建的水自净力扩增体系表明,污染物存在时H2O2的消耗量降低了1/3,且氮气气氛下的反应速率仅为空气气氛的1/6,证实污染物的快速去除源于溶解氧的激活而非H2O2的分解。理论计算结果表明,吸附在催化剂表面的污染物分子键长被原位拉伸;H2O2存在时拉伸效应进一步加强,且表面对于污染物分子的吸附能(Ead)下降。结果证实污染物的高效去除归因于吸附在不对称表面上H2O2触发的稳定污染物与惰性溶解氧之间的高效传质过程,这是实现水自净力扩增的关键。


上图:水自净力扩增体系效能及机制

Above: Efficacy and mechanism of water self-purification capacity expansion system

研究相关

上述论文通讯作者为吕来教授。第一作者为博士研究生孙英涛。该工作得到了国家自然科学基金、广东省重点领域研发计划、广州市基础与应用基础研究项目以及广东省珠江人才计划引进创新团队项目的资助。

所发刊物JACS Au是化学领域全球顶刊《美国化学会志(JACS)》开源版,发表化学领域具有创新性和高影响力的前沿研究成果。


论文信息

Yingtao Sun, Chun Hu and Lai Lyu*. H2O2 Triggering Electron-Directed Transfer of Emerging Contaminants over Asymmetric Nano Zinc Oxide Surfaces for Water Self-Purification Expansion.

全文链接:https://doi.org/10.1021/jacsau.4c00950


Trace amounts of HO on asymmetric surfaces drive water self-purification expansion


Research Background

Self-purification of natural water environment mainly relies on the natural interaction and mass transfer processes among endogenous coexisting substances such as dissolved oxygen (DO) and pollutants. However, the inertness of endogenous substances and the disorderliness of interaction lead to extremely long natural self-purification periods, and the removal of some pollutants even takes decades to hundreds of years, which has impeded the United Nations’ Sustainable Development Goal of “clean water”. So it is essential to break through this bottleneck with innovative technology.

Research Content

To address the above scientific challenges, Prof. Lai Lyu's group, proposed “Water Self-Purification Expansion” innovatively for the first time based on the previously developed Dual Reaction Center (DRC) water treatment technology. By designing nano catalysts with asymmetric surface, the inert port effect and the channel blocking effect could be successfully broken by the triggering of trace H2O2, which greatly accelerated the mass transfer process between pollutants and inert dissolved oxygen. The key breakthrough is that the interaction channels between pollutant molecules and DO are dynamically adjusted through the electronic polarization distribution on catalyst surface to significantly reduce the activation energy barrier of chemical bond breaking. It could reducing the dependence of traditional advanced oxidation technology on external energy and oxidants (e.g., H2O2), and realizing the “expansion” of the water self-purification capacity. This work was published in a research article titled “H2O2 Triggering Electron-Directed Transfer of Emerging Contaminants over Asymmetric Nano Zinc Oxide Surfaces for Water Self-Purification Expansion” in JACS Au.

Research Related

The corresponding author of this article is Prof. Lai Lyu. The first author is Yingtao Sun, a PhD student of Guangzhou University. This work was supported by the National Natural Science Foundation of China, the Key-Area Research and Development Program of Guangdong Province, the Basic and Applied Basic Research Project of Guangzhou and the Introduced Innovative R&D Team Project under the "Pearl River Talent Recruitment Program" of Guangdong Province.

JACS Au is an open access version of Journal of the American Chemical Society (JACS), the world's top journal in chemistry, which publishes innovative and high-impact cutting-edge research in chemistry.

Article Information

Yingtao Sun, Chun Hu and Lai Lyu*. H2O2 Triggering Electron-Directed Transfer of Emerging Contaminants over Asymmetric Nano Zinc Oxide Surfaces for Water Self-Purification Expansion.

Link to full article:https://doi.org/10.1021/jacsau.4c00950