聚合物电介质储能——让电容器不再只是罐头
什么是聚合物电介质?
聚合物电介质可以看成“高分子塑料+电偶极子”。一般是由长链碳骨架+极性基团(如C–F、C=O)构成;在外电场作用下,分子内部正负电荷瞬间分离,形成极化电荷,从而“锁住”能量。一句话:它像塑料一样柔韧,却又像陶瓷一样能够“储存”电场[1-4]。

为什么选它做电容器?
首先聚合物密度≈1 g cm⁻³,只有陶瓷的1/3;其次柔性好,可弯曲、可卷曲、可拉伸;而且易成膜,5 μm超薄薄膜连续卷绕,一张A4大小的薄膜可绕出100 m长带;除此之外介电常数可调,可通过分子设计,εr在2~100任君挑选;最后其具有自愈合能力,金属化薄膜在点击穿点瞬间“烧掉”缺陷,器件还可以继续工作。
PEI学名又名聚醚酰亚胺(Polyetherimide)具有透明琥珀色无定形颗粒外观;由芳香酰亚胺环+柔性醚键构成分子密码;Tg ≈ 217 °C,可在150 °C长期服役εr ≈ 3.15(1 MHz)几乎不随温度漂移;击穿强度可达16–20 kV mm⁻¹(薄膜级)[5-7]。根据电容公式C = ε₀εr A / d可知PEI的εr虽只有3.2左右,但d可以做得很薄(2 μm),且击穿强度高,因此单位体积能量密度Ue = ½ ε₀ εrE2可达0.5~1 J cm-3,远高于同厚度的聚丙烯。但PEI因本身苯环的π-π 共轭结构仍存在电导损耗大导致热失控的风险[8]。

蒙脱石具有天然的二维层状纳米片结构,且禁带宽度大及绝缘性能良好[9-11]。将蒙脱石纳米片引入聚合物基体中,能够提高载流子跃迁势垒就像是在电子跨栏中提高了栏杆高度,增大电子跳过去的难度,从而抑制传导电流[12-14],提高聚合物的高温储能性能。

聚合物电介质现广泛应用于电动汽车、新能源并网以及先进激光武器等领域。“会储能的塑料”让电容器不再只是‘罐头’,而是可弯曲、可穿戴、可植入的未来元件。
参考文献
[1] M. Yang, Y. Zhao, Z. Wang, H. Yan, Z. Liu, Q. Li, Z.-M. Dang, Surface ion-activated polymer composite dielectrics for superior high-temperature capacitive energy storage, Energy & Environmental Science, 17 (2024) 1592-1602.
[2] H. Liu, W. Zhu, Q. Mao, B. Peng, Y. Xu, G. Dong, B. Chen, R. Peng, Y. Zhao, Z. Zhou, S. Yang, H. Huang, M. Liu, Single-Crystalline BaZr(0.2) Ti(0.8) O(3) Membranes Enabled High Energy Density in PEI-Based Composites for High-Temperature Electrostatic Capacitors, Advanced materials, 35 (2023) e2300962.
[3] Y. Zhang, Y. Guo, Y. Liu, Z. Shi, W. Liu, J. Su, G. Chen, D. Zhou, All-organic ArPTU/PEI composite dielectric films with high-temperature resistance and high energy-storage density, Journal of Materials Chemistry C, 12 (2024) 4426-4432.
[4] J. Li, X. Liu, B. Huang, D. Chen, Z. Chen, Y. Li, Y. Feng, J. Yin, H. Yi, T. Li, Thermally activated dynamic bonding network for enhancing high-temperature energy storage performance of PEIbased dielectrics, Materials horizons, 10 (2023) 3651-3659.
[5] M. Yang, H. Li, J. Wang, W. Shi, Q. Zhang, H. Xing, W. Ren, B. Sun, M. Guo, E. Xu, N. Sun, L. Zhou, Y. Xiao, M. Zhang, Z. Li, J. Pan, J. Jiang, Z. Shen, X. Li, L.Gu, C.-W. Nan, X. Wang, Y. Shen, Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C, Nature Energy, 9 (2024) 143-153.
[6] M. Yang, S. Wang, J. Fu, Y. Zhu, J. Liang, S. Cheng, S. Hu, J. Hu, J. He, Q. Li, Quantum Size Effect to Induce Colossal High-Temperature Energy Storage Density and Efficiency in Polymer/Inorganic Cluster Composites, Advanced materials, 35 (2023) e2301936.
[7] M. Yang, L. Zhou, X. Li, W. Ren, Y. Shen, Polyimides Physically Crosslinked by Aromatic Molecules Exhibit Ultrahigh Energy Density at 200 degrees C, Advanced materials, 35 (2023) e2302392.
[8] C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang, S. Peng, Y. Li, S. Cheng, M. Yang, J. Hu, B. Zhang, R. Zeng, J. He, Q. Li, Polymer/molecular semiconductor all-organic composites for hightemperature dielectric energy storage, Nature communications, 11 (2020) 3919.
[9] Y. Wang, J. Zhou, A.C. Konstantinou, M.A. Baferani, K. Davis-Amendola, W. Gao, Y. Cao, Sandwiched Polymer Nanocomposites Reinforced by Two-Dimensional Interface Nanocoating for Ultrahigh Energy Storage Performance at Elevated Temperatures, Small, 19 (2023) e2208105.
[10] C. Yu, J. Wang, J. Yan, J. Xia, X. Zhang, Langmuir–Blodgett assisted alignment of 2D nanosheets in polymer nanocomposites for high-temperature dielectric energy storage applications, Journal of Materials Chemistry C, 12 (2024) 4728-4736.
[11] J. Zhu, X. Liu, M.L. Geier, J.J. McMorrow, D. Jariwala, M.E. Beck, W. Huang, T.J. Marks, M.C. Hersam, Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics, Advanced materials, 28 (2016) 63-68.
[12] Y. Wang, Z. Li, C. Wu, Y. Cao, High-temperature dielectric polymer nanocomposites with interposed montmorillonite nanosheets, Chemical Engineering Journal, 401 (2020) 126093.
[13] Y. Wang, Z. Li, C. Wu, P. Zhou, J. Zhou, J. Huo, K. Davis, A.C. Konstantinou, H. Nguyen, Y. Cao, Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage, Chemical Engineering Journal, 437 (2022) 135430.
[14] B. Zhang, J. Liu, M. Ren, C. Wu, T.J. Moran, S. Zeng, S.E. Chavez, Z. Hou, Z. Li, A.M. LaChance, T.R. Jow, B.D. Huey, Y. Cao, L. Sun, Reviving the "Schottky" Barrier for Flexible Polymer Dielectrics with a Superior 2D Nanoassembly Coating, Advanced materials, 33 (2021) e2101374.