Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localized dielectric breakdown and antireflection coating in metal–oxide–semiconductor photoelectrodes

Abstract

Silicon-based photoelectrodes for solar fuel production have attracted great interest over the past decade, with the major challenge being silicon’s vulnerability to corrosion. A metal–insulator–semiconductor architecture, in which an insulator film serves as a protection layer, can prevent corrosion but must also allow low-resistance carrier transport, generally leading to a trade-off between stability and efficiency. In this work, we propose and demonstrate a general method to decouple the two roles of the insulator by employing localized dielectric breakdown. This approach allows the insulator to be thick, which enhances stability, while enabling low-resistance carrier transport as required for efficiency. This method can be applied to various oxides, such as SiO2 and Al2O3. In addition, it is suitable for silicon, III–V compounds, and other optical absorbers for both photocathodes and photoanodes. Finally, the thick metal-oxide layer can serve as a thin-film antireflection coating, which increases light absorption efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metal–insulator–semiconductor photoelectrodes.
Figure 2: Electrical and photoelectrochemical characterization.
Figure 3: Antireflection coating and PEC performance.
Figure 4: Ni81Fe19 catalytic performance.

Similar content being viewed by others

References

  1. Boettcher, S. W. et al. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327, 185–187 (2010).

    Article  CAS  Google Scholar 

  2. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    Article  CAS  Google Scholar 

  3. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    Article  CAS  Google Scholar 

  4. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  CAS  Google Scholar 

  5. Esposito, D. V., Levin, I., Moffat, T. P. & Talin, A. A. H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 12, 562–568 (2013).

    Article  CAS  Google Scholar 

  6. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011).

    Article  CAS  Google Scholar 

  7. Hou, Y. D. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434–438 (2011).

    Article  CAS  Google Scholar 

  8. Dasgupta, N. P., Liu, C., Andrews, S., Prinz, F. B. & Yang, P. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 135, 12932–12935 (2013).

    Article  CAS  Google Scholar 

  9. Hill, J. C., Landers, A. T. & Switzer, J. A. An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochmical water oxidation. Nat. Mater. 14, 1150–1155 (2015).

    Article  CAS  Google Scholar 

  10. Ji, L. et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotech. 10, 84–90 (2015).

    Article  CAS  Google Scholar 

  11. Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013).

    Article  CAS  Google Scholar 

  12. Liao, L. et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotech. 9, 69–73 (2013).

    Article  Google Scholar 

  13. Chen, X. B., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  Google Scholar 

  14. Shi, J. et al. Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 11, 5587–5593 (2011).

    Article  CAS  Google Scholar 

  15. Tilley, S. D., Cornuz, M., Sivula, K. & Gratzel, M. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010).

    Article  CAS  Google Scholar 

  16. Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Article  CAS  Google Scholar 

  17. Fan, F. R. F., Keil, R. G. & Bard, A. J. Semiconductor electrodes. 48. Photooxidation of halides and water on n-silicon protected with silicide layers. J. Am. Chem. Soc. 105, 220–224 (1983).

    Article  CAS  Google Scholar 

  18. Kobayashi, M., Kinoshita, A., Saraswat, K., Wong, H. S. P. & Nishi, Y. Fermi-level depinning in metal/Ge Schottky junction and its application to metal source/drainage NMOSFET. 2008 Symposium on VLSI Technology, Digest of Technical Papers 54–55 (2008).

  19. Shan, C., Hou, X. & Choy, L. K. Corrosion resistance of TiO2 films grow by atomic layer deposition. Surf. Coat. Technol. 202, 2399–2402 (2008).

    Article  CAS  Google Scholar 

  20. Seger, B. et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 135, 1057–1064 (2013).

    Article  CAS  Google Scholar 

  21. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  22. Ji, L. et al. Integrated one diode–one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. Nano Lett. 14, 813–818 (2014).

    Article  CAS  Google Scholar 

  23. Yu, S. M., Chen, H. Y., Gao, B., Kang, J. F. & Wong, H. S. P. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 7, 2320–2325 (2013).

    Article  CAS  Google Scholar 

  24. Gong, M. et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).

    Article  CAS  Google Scholar 

  25. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).

    Article  CAS  Google Scholar 

  26. Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).

    Article  CAS  Google Scholar 

  27. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    Article  CAS  Google Scholar 

  28. Smith, R. D. L., Prévot, M. S., Fagan, R. D., Trudel, S. & Berlinguette, C. P. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586 (2013).

    Article  CAS  Google Scholar 

  29. Salou, M. et al. Initial oxidation of polycrystalline Permalloy surface. Surf. Sci. 602, 2901–2906 (2008).

    Article  CAS  Google Scholar 

  30. Trotochaud, L., Ranney, J. K., Williams, K. N. & Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation (grant DMR-1311866), and the Stanford Global Climate and Energy Project. This work was performed in part at the University of Texas Microelectronics Research Center, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (grant ECCS-1542159).

Author information

Authors and Affiliations

Authors

Contributions

L.J. and E.T.Y. contributed to the design concept. L.J., H.-Y.H., X.L., K.H. and Y.Z. performed the fabrication process and measurements. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Li Ji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Hsu, HY., Li, X. et al. Localized dielectric breakdown and antireflection coating in metal–oxide–semiconductor photoelectrodes. Nature Mater 16, 127–131 (2017). https://doi.org/10.1038/nmat4801

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing