Skip to main content
Log in

The lithium and sodium storage performances of phosphorus and its hierarchical structure

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recent preparation of black phosphorene and subsequent discovery of its excellent optical and electronic properties have attracted great attention, and renewed interest to phosphorus. Recent researches have indicated that phosphorus structures are promising anodes for lithium-ion and sodium-ion batteries. A high theoretical capacity of 2,596 mAh·g−1 was predicted for phosphorus according to the reaction of 3Li/Na + P → Li3P/Na3P. However, fast capacity degradation is accompanying with most phosphorus structures due to the low electronic conductivity and structural pulverization induced by large volume change in charging and discharging proceses. The electrochemical performances are significantly affected by the hierarchical structural design of phosphorus. A few reviews of phosphorus structures have been reported recently. However, no review about the electrochemical performances of phosphorus structures according to their hierarchical structures has been reported. First of all, phosphrus allotropes along with their structure and fundamental properties are briefly reviewed in this work. Secondly, the studies on lithiation/sodiation mechanism of red/black phosphorus are presented. Thirdly, a summary about the electrochemical performances of red/black phosphorus composites with different hierarchical structures is presented. Furthermore, the development challenges and future perspectives of phosphorus structures as anodes for LIBs and SIBs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruck, M.; Hoppe, D.; Wahl, B.; Simon, P.; Wang, Y. K.; Seifert, G. Fibrous red phosphorus. Angew. Chem., Int. Ed. 2005, 44, 7616–7619.

    Google Scholar 

  2. Zhao, D.; Zhang, J. Y.; Fu, C. C.; Huang, J. L.; Xiao, D. B.; Yuen, M. M. F.; Niu, C. M. Enhanced cycling stability of ring-shaped phosphorus inside multi-walled carbon nanotubes as anodes for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 2540–2548.

    Google Scholar 

  3. Bachhuber, F.; von Appen, J.; Dronskowski, R.; Schmidt, P.; Nilges, T.; Pfitzner, A.; Weihrich, R. Van der Waals interactions in selected allotropes of phosphorus. Z. Krist.-Cryst. Mater. 2015, 230, 107–115.

    Google Scholar 

  4. Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.

    Google Scholar 

  5. Xue, Y. H.; Zhang, Q.; Zhang, T.; Fu, L. Black phosphorus: Properties, synthesis, and applications in energy conversion and storage. ChemNanoMat 2017, 3, 352–361.

    Google Scholar 

  6. Shen, Z. R.; Sun, S. T.; Wang, W. J.; Liu, J. W.; Liu, Z. F.; Yu, J. C. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 2015, 3, 3285–3288.

    Google Scholar 

  7. Zhao, S. J.; Kang, W.; Xue, J. M. The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2014, 2, 19046–19052.

    Google Scholar 

  8. Li, W. F.; Yang, Y. M.; Zhang, G.; Zhang, Y. W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015, 15, 1691–1697.

    Google Scholar 

  9. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Google Scholar 

  10. Liu, Y. H.; Yu, X. Y.; Fang, Y. J.; Zhu, X. S.; Bao, J. C.; Zhou, X. S.; Lou, X. W. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2018, 2, 725–735.

    Google Scholar 

  11. Xu, X.; Dou, Z. F.; Gu, E. L.; Si, L.; Zhou, X. S.; Bao, J. C. Uniformlydistributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage. J. Mater. Chem. A 2017, 5, 13411–13420.

    Google Scholar 

  12. Zhao, X. S.; Yu, L.; Yu, X. Y.; Luo, X. W. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv. Energy Mater. 2016, 6, 1601177.

    Google Scholar 

  13. Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, doi: 10.1007/s40843-018-9324-0.

    Google Scholar 

  14. Fan, X. L.; Mao, J. F.; Zhu, Y. J.; Luo, C.; Suo, L. M.; Gao, T.; Han, F. D.; Liou, S. C.; Wang, C. S. Superior stable self-healing SnP3 Anode for sodium-ion batteries. Adv. Energy Mater. 2015, 5, 1500174.

    Google Scholar 

  15. Kim, S. O.; Manthiram, A. Phosphorus-rich CuP2 embedded in carbon matrix as a high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 16221–16227.

    Google Scholar 

  16. Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13, 346–349.

    Google Scholar 

  17. Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cyclingstable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931–8933.

    Google Scholar 

  18. Mayo, M.; Griffith, K. J.; Pickard, C. J.; Morris, A. J. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem. Mater. 2016, 28, 2011–2021.

    Google Scholar 

  19. Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139–4144.

    Google Scholar 

  20. Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Nastorage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014, 14, 1865–1869.

    Google Scholar 

  21. Li, W. J.; Chou, S. L.; Wang, J. Z.; Kim, J. H.; Liu, H. K.; Dou, S. X. Sn4+ P3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv. Mater. 2014, 26, 4037–4042.

    Google Scholar 

  22. Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531–3538.

    Google Scholar 

  23. Li, Q.; Li, Z. Q.; Zhang, Z. W.; Li, C. X.; Ma, J. Y.; Wang, C. X.; Ge, X. L.; Dong, S. H.; Yin, L. W. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1600376.

    Google Scholar 

  24. Liu, S. L.; Zhang, H. Z.; Xu, L. Q.; Ma, L. B.; Chen, X. X. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J. Power Sources 2016, 304, 346–353.

    Google Scholar 

  25. Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 3682–3685.

    Google Scholar 

  26. Yang, Q. R.; Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery. RSC Adv. 2015, 5, 80536–80541.

    Google Scholar 

  27. Han, F.; Tan, C. Y. J.; Gao, Z. Q. Improving the specific capacity and cyclability of sodium-ion batteries by engineering a dual-carbon phasemodified amorphous and mesoporous iron phosphide. ChemElectroChem 2016, 3, 1054–1062.

    Google Scholar 

  28. Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.

    Google Scholar 

  29. Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627–632.

    Google Scholar 

  30. Guo, G. L.; Guo, Y. Y.; Tan, H. T.; Yu, H.; Chen, W. H.; Fong, E.; Yan, Q. Y. From fibrous elastin proteins to one-dimensional transition metal phosphides and their applications. J. Mater. Chem. A 2016, 4, 10893–10899.

    Google Scholar 

  31. Ge, X. L.; Li, Z. Q.; Yin, L. W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 2017, 32, 117–124.

    Google Scholar 

  32. Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk–shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.

    Google Scholar 

  33. Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

    Google Scholar 

  34. Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. C.; Wang, C. S. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015, 9, 3254–3264.

    Google Scholar 

  35. Yu, Z. X.; Song, J. X.; Gordin, M. L.; Yi, R.; Tang, D. H.; Wang, D. H. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2015, 2, 1400020.

    Google Scholar 

  36. Botos, A.; Biskupek, J.; Chamberlain, T. W.; Rance, G. A.; Stoppiello, C. T.; Sloan, J.; Liu, Z.; Suenaga, K.; Kaiser, U.; Khlobystov, A. N. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: Sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J. Am. Chem. Soc. 2016, 138, 8175–8183.

    Google Scholar 

  37. Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Suyetin, M.; Majouga, A. G.; Besley, E.; Kaiser, U.; Khlobystov, A. N. Investigation of the interactions and bonding between carbon and group VIII metals at the atomic scale. Small 2016, 12, 1649–1657.

    Google Scholar 

  38. Li, X.; Wang, Z. Y.; Zhang, J. Y.; Xie, C.; Li, B. B.; Wang, R.; Li, J.; Niu, C. M. Carbon nanotube hybrids with MoS2 and WS2 synthesized with control of crystal structure and morphology. Carbon 2015, 85, 168–175.

    Google Scholar 

  39. Allen, C. S.; Liu, G. Q.; Chen, Y. B.; Robertson, A. W.; He, K.; Porfyrakis, K.; Zhang, J.; Briggs, G. A. D.; Warner, J. H. Optically enhanced charge transfer between C60 and single-wall carbon nanotubes in hybrid electronic devices. Nanoscale 2014, 6, 572–580.

    Google Scholar 

  40. Zhang, J. Y.; Zhu, Z.; Feng, Y. Q.; Ishiwata, H.; Miyata, Y.; Kitaura, R.; Dahl, J. E. P.;Carlson, R. M. K.; Fokina, N. A.; Schreiner, P. R. et al. Evidence of diamond nanowires formed inside carbon nanotubes from diamantane dicarboxylic acid. Angew. Chem., Int. Ed. 2013, 125, 3805–3809.

    Google Scholar 

  41. del Carmen Gimenez-Lopez, M.; Kurtoglu, A.; Walsh, D. A.; Khlobystov, A. N. Extremely stable platinum-amorphous carbon electrocatalyst within hollow graphitized carbon nanofibers for the oxygen reduction reaction. Adv. Mater. 2016, 28, 9103–9108.

    Google Scholar 

  42. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Google Scholar 

  43. Peng, L. L.; Zhu, Y.; Chen, D. H.; Ruoff, R. S.; Yu, G. H. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600025.

    Google Scholar 

  44. Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738–762.

    Google Scholar 

  45. Shi, Y.; Yu, G. H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 2016, 28, 2466–2477.

    Google Scholar 

  46. Qiu, M.; Sun, Z. T.; Sang, D. K.; Han, X. G.; Zhang, H.; Niu, C. M. Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 2017, 9, 13384–13403.

    Google Scholar 

  47. Qin, X. Y.; Yan, B. Y.; Yu, J.; Jin, J.; Tao, Y.; Mu, C.; Wang, S. C.; Xue, H. G.; Pang, H. Phosphorus-based materials for high-performance rechargeable batteries. Inorg. Chem. Front. 2017, 4, 1424–1444.

    Google Scholar 

  48. Pang, J. B.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z. F.; Rummeli, M. H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018, 8, 1702093.

    Google Scholar 

  49. Ansari, S. A.; Khan, Z.; Ansari, M. O.; Cho, M. H. Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications. RSC Adv. 2016, 6, 44616–44629.

    Google Scholar 

  50. Xia, Q. B.; Li, W. J.; Miao, Z. C.; Chou, S. L.; Liu, H. K. Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res. 2017, 10, 4055–4081.

    Google Scholar 

  51. Ren, X. L.; Lian, P. C.; Xie, D. L.; Yang, Y.; Mei, Y.; Huang, X. R.; Wang, Z. R.; Yin, X. T. Properties, preparation and application of black phosphorus/phosphorene for energy storage: A review. J. Mater. Sci. 2017, 52, 10364–10386.

    Google Scholar 

  52. Zhang, Y.; Zheng, Y.; Rui, K.; Hng, H. H.; Hippalgaonkar, K.; Xu, J. W.; Sun, W. P.; Zhu, J. X.; Yan, Q. Y.; Huang, W. 2D black phosphorus for energy storage and thermoelectric applications. Small 2017, 13, 1700661.

    Google Scholar 

  53. Hultgren, R.; Gingrich, N. S.; Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351–355.

    Google Scholar 

  54. Jamieson, J. C. Crystal structures adopted by black phosphorus at high pressures. Science 1963, 139, 1291–1292.

    Google Scholar 

  55. Chen, Z. Y.; Zhu, Y. B.; Lei, J.; Liu, W. Y.; Xu, Y. K.; Feng, P. Z. A stageby- stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm 2017, 19, 7207–7212.

    Google Scholar 

  56. Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 2015, 9, 3596–3604.

    Google Scholar 

  57. Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

    Google Scholar 

  58. Liu, H. W.; Tao, L.; Zhang, Y. Q.; Xie, C.; Zhou, P.; Liu, H. B.; Chen, R.; Wang, S. Y. Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 2017, 9, 36849–36856.

    Google Scholar 

  59. Jiang, Q. Q.; Li, J.; Yuan, N. N.; Wu, Z. X.; Tang, J. G. Black phosphorus with superior lithium ion batteries performance directly synthesized by the efficient thermal-vaporization method. Electrochim. Acta 2018, 263, 272–276.

    Google Scholar 

  60. Del Rio Castillo, A. E.; Pellegrini, V.; Sun, H. Y.; Buha, J.; Dinh, D. A.; Lago, E.; Ansaldo, A.; Capasso, A.; Manna, L.; Bonaccorso, F. Exfoliation of few-layer black phosphorus in low-boiling-point solvents and its application in Li-ion batteries. Chem. Mater. 2018, 30, 506–516.

    Google Scholar 

  61. Shimizu, M.; Tsushima, Y.; Arai, S. Electrochemical Na-insertion/extraction property of Ni-coated black phosphorus prepared by an electroless deposition method. ACS Omega 2017, 2, 4306–4315.

    Google Scholar 

  62. Roth, W. L.; DeWitt, T. W.; Smith, A. J. Polymorphism of red phosphorus. J. Am. Chem. Soc. 1947, 69, 2881–2885.

    Google Scholar 

  63. Hittorf, W. Zur kenntniss des phosphors. Ann. Phys. Berlin 1865, 202, 193–228.

    Google Scholar 

  64. Pfitzner, A.; Bräu, M. F.; Zweck, J.; Brunklaus, G.; Eckert, H. Phosphorus nanorods-two allotropic modifications of a long-known element. Angew. Chem., Int. Ed. 2004, 43, 4228–4231.

    Google Scholar 

  65. Karttunen, A. J.; Linnolahti, M.; Pakkanen, T. A. Icosahedral and ring-shaped allotropes of phosphorus. Chem.–Eur. J. 2007, 13, 5232–5237.

    Google Scholar 

  66. Zhang, J. Y.; Zhao, D.; Xiao, D. B.; Ma, C. S.; Du, H. C.; Li, X.; Zhang, L. H.; Huang, J. L.; Huang, H. Y.; Jia, C. L. et al. Assembly of ring-shaped phosphorus within carbon nanotube nanoreactors. Angew. Chem., Int. Ed. 2017, 56, 1850–1854.

    Google Scholar 

  67. Kim, Y. U.; Lee, C. K.; Sohn, H. J.; Kang, T. Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries. J. Electrochem. Soc. 2004, 151, A933–A937.

    Google Scholar 

  68. Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

    Google Scholar 

  69. Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemelEctroChem 2014, 1, 580–589.

    Google Scholar 

  70. Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465–2468.

    Google Scholar 

  71. Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

    Google Scholar 

  72. Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zuo, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/Ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965.

    Google Scholar 

  73. Subramaniyam, C. M.; Tai, Z. X.; Mahmood, N.; Zhang, D.; Liu, H. K.; Goodenough, J. B.; Dou, S. X. Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries. J. Mater. Chem. A 2017, 5, 1925–1929.

    Google Scholar 

  74. Zhang, Y. Y.; Rui, X. H.; Tang, Y. X.; Liu, Y. Q.; Wei, J. Q.; Chen, S.; Leow, W. R.; Li, W. L.; Liu, Y. J.; Deng, J. Y. et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.

    Google Scholar 

  75. Zhou, J. B.; Liu, X. Y.; Cai, W. L.; Zhu, Y. C.; Liang, J. W.; Zhang, K. L.; Lan, Y.; Jiang, Z. H.; Wang, G. M.; Qian, Y. T. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv. Mater. 2017, 29, 1700214.

    Google Scholar 

  76. Sun, L. Q.; Li, M. J.; Sun, K.; Yu, S. H.; Wang, R. S.; Xie, H. M. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 14772–14779.

    Google Scholar 

  77. Dahbi, M.; Yabuuchi, N.; Fukunishi, M.; Kubota, K.; Chihara, K.; Tokiwa, K.; Yu, X. F.; Ushiyama, H.; Yamashita, K.; Son, J. Y. et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: Investigation of the electrode/electrolyte interface. Chem. Mater. 2016, 28, 1625–1635.

    Google Scholar 

  78. Lee, G. H.; Jo, M. R.; Zhang, K.; Kang, Y. M. A reduced graphene oxideencapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 3683–3690.

    Google Scholar 

  79. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.

    Google Scholar 

  80. Kim, S. O.; Manthiram, A. High-performance red P-based P–TiP2–C nanocomposite anode for lithium-ion and sodium-ion storage. Chem. Mater. 2016, 28, 5935–5942.

    Google Scholar 

  81. Walter, M.; Erni, R.; Kovalenko, M. V. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Sci. Rep. 2015, 5, 8418.

    Google Scholar 

  82. Kim, S. O.; Manthiram, A. The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode. Chem. Commun. 2016, 52, 4337–4340.

    Google Scholar 

  83. Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754–21759.

    Google Scholar 

  84. Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034–9037.

    Google Scholar 

  85. Wang, Y. L.; Tian, L. Y.; Yao, Z. H.; Li, F.; Li, S.; Ye, S. H. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim. Acta 2015, 163, 71–76.

    Google Scholar 

  86. Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100–104.

    Google Scholar 

  87. Sun, L.; Zhang, Y.; Zhang, D. Y.; Liu, J. G.; Zhang, Y. H. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Res. 2018, 11, 2733–2745.

    Google Scholar 

  88. Li, D. S.; Wang, D. Y.; Rui, K.; Ma, Z. Y.; Xie, L.; Liu, J. H.; Zhang, Y.; Chen, R. F.; Yan, Y.; Lin, H. J. et al. Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries. J. Power Sources 2018, 384, 27–33.

    Google Scholar 

  89. Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2015, 3, 5572–5584.

    Google Scholar 

  90. Xu, Z. W.; Zeng, Y.; Wang, L. Y.; Li, N.; Chen, C.; Li, C. Y.; Li, J.; Lv, H. M.; Kuang, L. Y.; Tian, X. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries. J. Power Sources 2017, 356, 18–26.

    Google Scholar 

  91. Yuan, D. M.; Cheng, J. L.; Qu, G. X.; Li, X. D.; Ni, W.; Wang, B.; Liu, H. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J. Power Sources 2016, 301, 131–137.

    Google Scholar 

  92. Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.

    Google Scholar 

  93. Luo, Z. Z.; Zhang, Y.; Zhang, C. H.; Tan, H. T.; Li, Z.; Abutaha, A.; Wu, X. L.; Xiong, Q.; Khor, K. A.; Hippalgaonkar, K. et al. Multifunctional 0D–2D Ni2P nanocrystals–black phosphorus heterostructure. Adv. Energy Mater. 2017, 7, 1601285.

    Google Scholar 

  94. Nagao, M.; Hayashi, A.; Tatsumisago, M. All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J. Power Sources 2011, 196, 6902–6905.

    Google Scholar 

  95. Liu, H. W.; Zou, Y. Q.; Tao, L.; Ma, Z. L.; Liu, D. D.; Zhou, P.; Liu, H. B.; Wang, S. Y. Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 2017, 13, 1700758.

    Google Scholar 

  96. Du, Y. L.; Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718.

    Google Scholar 

  97. Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633–4636.

    Google Scholar 

  98. Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480–5484.

    Google Scholar 

  99. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933–11941.

    Google Scholar 

  100. Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.

    Google Scholar 

  101. Zhang, Y.; Wang, H. W.; Luo, Z. Z.; Tan, H. T.; Li, B.; Sun, S. N.; Li, Z.; Zong, Y.; Xu, Z. J.; Yang, Y. H. et al. An air-stable densely packed phosphorene–graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 2016, 6, 1600453.

    Google Scholar 

  102. Zhang, Y.; Sun, W. P.; Luo, Z. Z.; Zheng, Y.; Yu, Z. W.; Zhang, D.; Yang, J.; Tan, H. T.; Zhu, J. X.; Wang, X. L. et al. Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 2017, 40, 576–586.

    Google Scholar 

  103. Zhao, D.; Li, B. B.; Zhang, J. Y.; Li, X.; Xiao, D. B.; Fu, C. C.; Zhang, L. H.; Li, Z. H.; Li, J.; Cao, D. X. et al. A hierarchical phosphorus nanobarbed nanowire hybrid: Its structure and electrochemical properties. Nano Lett. 2017, 17, 3376–3382.

    Google Scholar 

  104. Shen, Z. R.; Hu, Z. F.; Wang, W. J.; Lee, S. F.; Chan, D. K. L.; Li, Y. C.; Gu, T.; Yu, J. C. Crystalline phosphorus fibers: Controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale 2014, 6, 14163–14167.

    Google Scholar 

  105. Zhao, D.; Zhang, L. H.; Fu, C. C.; Huang, J. L.; Huang, H. Y.; Li, Z. H.; Zhang, J. Y.; Niu, C. M. Hierarchical phosphorus hybrids with carbon nanotube veins and black phosphorus skins: Structure and lithium storage properties. Carbon 2018, 139, 1057–1062.

    Google Scholar 

  106. Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054–2060.

    Google Scholar 

  107. Pei, L. K.; Zhao, Q.; Chen, C. C.; Liang, J.; Chen, J. Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries. ChemElectroChem 2015, 2, 1652–1655.

    Google Scholar 

  108. Sun, J.; Lee, H. W.; Pasta, M.; Sun, Y. M.; Liu, W.; Li, Y. B.; Lee, H. R.; Liu, N.; Cui, Y. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater. 2016, 4, 130–136.

    Google Scholar 

  109. Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 2014, 78, 455–462.

    Google Scholar 

  110. Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.

    Google Scholar 

  111. Xu, T.; Li, D. H.; Chen, S.; Sun, Y. Y.; Zhang, H. W.; Xia, Y. Z.; Yang, D. J. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chem. Eng. J. 2018, 345, 604–610.

    Google Scholar 

  112. Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

    Google Scholar 

  113. Gao, H.; Zhou, T. F.; Zheng, Y.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1601037.

    Google Scholar 

  114. Yao, S. S.; Cui, J.; Huang, J. Q.; Huang, J. Q.; Chong, W. G.; Qin, L.; Mai, Y. W.; Kim, J. K. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702267.

    Google Scholar 

  115. Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

    Google Scholar 

  116. Xu, J.; Ding, J. N.; Zhu, W. J.; Zhou, X. S.; Ge, S. H.; Yuan, N. Y. Nanostructured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries. Sci. China Mater. 2018, 61, 371–381.

    Google Scholar 

  117. Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H.; An, Y. L. A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1222–1233.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 21771143). J. Z. is supported by the Cyrus Tang Foundation through Tang Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhang, L., Fu, C. et al. The lithium and sodium storage performances of phosphorus and its hierarchical structure. Nano Res. 12, 1–17 (2019). https://doi.org/10.1007/s12274-018-2206-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2206-6

Keywords

Navigation