Skip to main content
Log in

Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dendrite formation on lithium (Li) metal anode is a key issue which hinders the development of rechargeable Li battery seriously. A novel method for suppressing Li dendrites via using Li phosphorous oxynitride (LiPON) modified Li anode and Li1.5Al0.5Ge1.5(PO4)3-poly(ethylene oxide)(Li bistrifluoromethane-sulfonimide) (LAGP-PEO(LiTFSI)) composite solid electrolyte in all-solid-state Li battery is proposed, and the effect of the thickness of LiPON on Li anode performance is also studied. LiPON film with a thickness of 500 nm exhibits satisfactory interface property between Li metal anode and the LAGP-PEO(LiTFSI) solid electrolyte. The LiPON film provides a uniform Li+ flux across the interface and effectively inhibits the formation of Li dendrites in all-solid-state Li batteries. The assembled all-solid-state Li cell Li(LiPON)/LAGPPEO( LiTFSI)/LiFePO4 delivers an initial discharge capacity of 152.4 mAh·g−1 and exhibits good cycling stability and rate performance at 50 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater., in press, DOI: 10.1007/s40843-018-9324-0.

  2. Kim, H.; Jeong, G.; Kim, Y.-U.; Kim, J.-H.; Park, C.-M.; Sohn, H.-J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

    Article  Google Scholar 

  3. Zhamu, A.; Chen, G. R.; Liu, C. G.; Neff, D.; Fang, Q.; Yu, Z. N.; Xiong, W.; Wang, Y. B.; Wang, X. Q.; Jang, B. Z. Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 2012, 5, 5701–5707.

    Article  Google Scholar 

  4. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  Google Scholar 

  5. Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. B.; Rubloff, G. W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 2015, 9, 5884–5892.

    Article  Google Scholar 

  6. Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q. L.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 2016, 8, 10617–10626.

    Article  Google Scholar 

  7. Sun, F.; Zielke, L.; Marköetter, H.; Hilger, A.; Zhou, D.; Moroni, R.; Zengerle, R.; Thiele, S.; Banhart, J.; Manke, I. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography. ACS Nano 2016, 10, 7990–7997.

    Article  Google Scholar 

  8. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  9. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  10. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

    Article  Google Scholar 

  11. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863.

    Article  Google Scholar 

  12. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E32.

    Article  Google Scholar 

  13. Peled, E. The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems-the solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

    Article  Google Scholar 

  14. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

    Article  Google Scholar 

  15. Schmitz, R.; Müller, R. A.; Schmitz, R. W.; Schreiner, C.; Kunze, M.; Lex-Balducci, A.; Passerini, S.; Winter, M. SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J. Power Sources 2013, 233, 110–114.

    Article  Google Scholar 

  16. Besenhard, J. O.; Wagner, M. W.; Winter, M.; Jannakoudakis, A. D.; Jannakoudakis, P. D.; Theodoridou, E. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon lithium electrodes. J. Power Sources 1993, 44, 413–420.

    Article  Google Scholar 

  17. Kitaura, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. J. Mater. Chem. 2011, 21, 118–124.

    Article  Google Scholar 

  18. Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540.

    Article  Google Scholar 

  19. Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

    Article  Google Scholar 

  20. Liu, T.; Chang, Z. W.; Yin, Y. B.; Chen, K.; Zhang, Y.; Zhang, X. B. The PVDF-HFP gel polymer electrolyte for Li-O2 battery. Solid State Ionics 2018, 318, 88–94.

    Article  Google Scholar 

  21. Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv. Mater. 2017, 29, 1606552.

    Article  Google Scholar 

  22. Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.

    Article  Google Scholar 

  23. Sudo, R.; Nakata, Y.; Ishiguro, K.; Matsui, M.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 2014, 262, 151–154.

    Article  Google Scholar 

  24. Ren, Y. Y.; Shen, Y.; Lin, Y. H.; Nan, C. W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 2015, 57, 27–30.

    Article  Google Scholar 

  25. Okumura, T.; Nakatsutsumi, T.; Ina, T.; Orikasa, Y.; Arai, H.; Fukutsuka, T.; Iriyama, Y.; Uruga, T.; Tanida, H.; Uchimoto, Y. et al. Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode-solid electrolyte interface for all solid state lithium ion batteries. J. Mater. Chem. 2011, 21, 10051–10060.

    Article  Google Scholar 

  26. Jung, Y. C.; Lee, S. M.; Choi, J. H.; Jang, S. S.; Kim, D. W. All solid-state lithium batteries assembled with hybrid solid electrolytes. J. Electrochem. Soc. 2015, 162, A704–A710.

    Article  Google Scholar 

  27. Du, F. M.; Zhao, N.; Li, Y. Q.; Chen, C.; Liu, Z. W.; Guo, X. X. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J. Power Sources 2015, 300, 24–28.

    Article  Google Scholar 

  28. Li, C. L.; Wang, J.; Chang, Z. W.; Yin, Y. B.; Yang, X. Y.; Zhang, X. B. Preparation and characterization of PAN-LATP composite solid-state electrolyte. Sci. Sinica Chim. 2018, 48, 964–971.

    Article  Google Scholar 

  29. Kotobuki, M.; Hoshina, K.; Kanamura, K. Electrochemical properties of thin TiO2 electrode on Li1+xAlxGe2−x(PO4)3 solid electrolyte. Solid State Ionics 2011, 198, 22–25.

    Article  Google Scholar 

  30. Bates, J. B.; Dudney, N. J.; Gruzalski, G. R.; Zuhr, R. A.; Choudhury, A.; Luck, C. F.; Robertson, J. D. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 1992, 53–56, 647–654.

    Article  Google Scholar 

  31. Neudecker, B. J.; Dudney, N. J.; Bates, J. B. “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 2000, 147, 517–523.

    Article  Google Scholar 

  32. Yu, X. H.; Bates, J. B.; Jellison, G. E.; Hart, F. X. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 1997, 144, 524–532.

    Article  Google Scholar 

  33. Dudney, N. J.; Neudecker, B. J. Solid state thin-film lithium battery systems. Curr. Opin. Solid State Mater. Sci. 1999, 4, 479–482.

    Article  Google Scholar 

  34. Iriyama, Y.; Nishimoto, K.; Yada, C.; Abe, T.; Ogumi, Z.; Kikuchi, K. Charge-transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium manganese oxide thin-film interface and its stability on cycling. J. Electrochem. Soc. 2006, 153, A821–A825.

    Article  Google Scholar 

  35. Song, S. W.; Choi, H.; Park, H. Y.; Park, G. B.; Lee, K. C.; Lee, H. J. High rate-induced structural changes in thin-film lithium batteries on flexible substrate. J. Power Sources 2010, 195, 8275–8279.

    Article  Google Scholar 

  36. Jang, Y. I.; Dudney, N. J.; Blom, D. A.; Allard, L. F. High-voltage cycling behavior of thin-film LiCoO2 cathodes. J. Electrochem. Soc. 2002, 149, A1442–A1447.

    Article  Google Scholar 

  37. Dudney, N. J.; Bates, J. B.; Zuhr, R. A.; Young, S.; Robertson, J. D.; Jun, H. P.; Hackney, S. A. Nanocrystalline LixMn2–yO4 cathodes for solid-state thin-film rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 2455–2464.

    Article  Google Scholar 

  38. Fleutot, B.; Pecquenard, B.; Le Cras, F.; Delis, B.; Martinez, H.; Dupont, L.; Guy-Bouyssou, D. Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale. J. Power Sources 2011, 196, 10289–10296.

    Article  Google Scholar 

  39. Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396–A404.

    Article  Google Scholar 

  40. Herbert, E. G.; Tenhaeff, W. E.; Dudney, N. J.; Pharr, G. M. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 2011, 520, 413–418.

    Article  Google Scholar 

  41. Wang, B.; Bates, J. B.; Hart, F. X.; Sales, B. C.; Zuhr, R. A.; Robertson, J. D. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J. Electrochem. Soc. 1996, 143, 3203–3213.

    Article  Google Scholar 

  42. Lee, S. J.; Balk, H. K.; Lee, S. M. An all-solid-state thin film battery using LISIPON electrolyte and Si-V negative electrode films. Electrochem. Commun. 2003, 5, 32–35.

    Article  Google Scholar 

  43. Liu, W. Y.; Fu, Z. W.; Qin, Q. Z. A “lithium-free” thin-film battery with an unexpected cathode layer. J. Electrochem. Soc. 2008, 155, A8–A13.

    Article  Google Scholar 

  44. Fleutot, B.; Pecquenard, B.; Martinez, H.; Letellier, M.; Levasseur, A. Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics 2011, 186, 29–36.

    Article  Google Scholar 

  45. Liu, W. Y.; Fu, Z. W.; Li, C. L.; Qin, Q. Z. Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of E-beam reaction evaporation. Electrochem. Solid-State Lett. 2004, 7, J36–J40.

    Article  Google Scholar 

  46. Wang, B.; Chakoumakos, B. C.; Sales, B. C.; Kwak, B. S.; Bates, J. B. Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure. J. Solid State Chem. 1995, 115, 313–323.

    Article  Google Scholar 

  47. Wang, C. H.; Yang, Y. F.; Liu, X. J.; Zhong, H.; Xu, H.; Xu, Z. B.; Shao, H. X.; Ding, F. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694–13702.

    Article  Google Scholar 

  48. Zhao, S. L.; Fu, Z. W.; Qin, Q. Z. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition. Thin Solid Films 2002, 415, 108–113.

    Article  Google Scholar 

  49. Iriyama, Y.; Kako, T.; Yada, C.; Abe, T.; Ogumi, Z. Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal treatment. J. Power Sources 2005, 146, 745–748.

    Article  Google Scholar 

  50. Le Van-Jodin, L.; Ducroquet, F.; Sabary, F.; Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ionics 2013, 253, 151–156.

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciated the financial support of the National Natural Science Foundation of China (No. 21233004) and Natural Science Foundation of Anhui Education Department (No. KJ2018A0372).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoliang Bai, Yifu Yang or Xingjiang Liu.

Electronic supplementary material

12274_2018_2205_MOESM1_ESM.pdf

Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Bai, G., Yang, Y. et al. Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 12, 217–223 (2019). https://doi.org/10.1007/s12274-018-2205-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2205-7

Keywords

Navigation