Skip to main content
Log in

Amperometric sensing of ascorbic acid by using a glassy carbon electrode modified with mesoporous carbon nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mesoporous carbon nanorods (MCNRs) were prepared from honey as the carbon source and by using crab (Brachyuran) shells as the hard template. The unique nanostructure of the MCNRs with their uniform mesoporous size, abundant defective sites and numerous oxygen-functional groups was characterized by nitrogen adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Cyclic voltammograms of a glassy carbon electrode (GCE) modified with MCNRs revel a higher peak current density and lower peak potential (−0.03 V vs. Ag/AgCl) for ascorbic acid (AA) electrooxidation compared to a conventional GCE and a carbon nanotube-modified GCE. Figures of merit for this sensor include (a) a wide linear range (10–2770 μM), (b) high electrochemical sensitivity (216.91 μA mM−1 cm−2) and (c) a low detection limit (2.3 μM). These compare favorably to the respective data for a CNT-modified GCE (50–2150 μM, 5.20 μA mM−1 cm−2 and 26.8 μM) and a plain GCE (100–2000 μM, 0.58 μA mM−1 cm−2 and 54.6 μM). The modified GCE was successfully applied to the determination of AA in (spiked) real samples including an injection, soft drinks and fresh lemon juice. Therefore, the new sensor can be considered as an affordable tool for electrochemical sensing of AA in real samples.

Mesoporous carbon nanorods (MCNRs) were prepared by using honey as the carbon source and crab shells as the hard template. The MCNRs modified a glassy carbon electrode (MCNRs/GCE) was used for the ascorbic acid (AA) detection by amperometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raveendran J, Krishnan RG, Nair BG, Babu TGS (2017) Voltammetric determination of ascorbic acid by using a disposable screen printed electrode modified with Cu(OH)2 nanorods. Microchim Acta 184(3):1–7. https://doi.org/10.1007/s00604-017-2391-0

    Article  CAS  Google Scholar 

  2. Haldorai Y, Choe SR, Huh YS, Han YK (2018) A composite consisting of microporous carbon and cobalt(III) oxide and prepared from zeolitic imidazolate framework-67 for voltammetric determination of ascorbic acid. Microchim Acta 185(2):116. https://doi.org/10.1007/s00604-018-2669-x

    Article  CAS  Google Scholar 

  3. Yan S, Li X, Xiong Y, Wang M, Yang L, Liu X, Li X, Alshahrani LAM, Liu P, Zhang C (2016) Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes. Microchim Acta 183(4):1401–1408. https://doi.org/10.1007/s00604-016-1776-9

    Article  CAS  Google Scholar 

  4. Scremin J, Ecm B, Car SN, Phc C, Sartori ER (2018) Amperometric determination of ascorbic acid with a glassy carbon electrode modified with TiO2-gold nanoparticles integrated into carbon nanotubes. Microchim Acta 185(5):251. https://doi.org/10.1007/s00604-018-2785-7

    Article  CAS  Google Scholar 

  5. Rao H, Ge H, Lu Z, Liu W, Chen Z, Zhang Z, Wang X, Zou P, Wang Y, He H (2016) Copper nanoclusters as an on-off -on fluorescent probe for ascorbic acid. Microchim Acta 183(5):1651–1657. https://doi.org/10.1007/s00604-016-1794-7

    Article  CAS  Google Scholar 

  6. Wu F, Huang T, Hu Y, Yang X, Ouyang Y, Xie Q (2016) Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Microchim Acta 183(9):1–8. https://doi.org/10.1007/s00604-016-1895-3

    Article  CAS  Google Scholar 

  7. Zhu C, Yang G, Li H, Du D, Lin Y (2014) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114(19):9385–9454. https://doi.org/10.1021/cr500061m

    Article  PubMed  Google Scholar 

  9. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyabd SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801. https://doi.org/10.1039/C5TA09323F

    Article  CAS  Google Scholar 

  10. Wen W, Song Y, Yan X, Zhu C, Du D, Wang S, Asiri AM, Lin Y (2017) Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater Today 21(2):164–177. https://doi.org/10.1016/j.mattod.2017.09.001

    Article  CAS  Google Scholar 

  11. Jang J, Lee KJ, Kim Y (2005) Fabrication of polyimide nanotubes and carbon nanotubes containing magnetic iron oxide in confinement. Chem Commun 30(30):3847–3849. https://doi.org/10.1039/b503831f

    Article  CAS  Google Scholar 

  12. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805. https://doi.org/10.1016/j.cej.2015.08.014

    Article  CAS  Google Scholar 

  13. Briscoe J, Marinovic A, Sevilla M, Dunn S, Titirici M (2015) Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew Chem 54(15):4463–4468. https://doi.org/10.1002/anie.201409290

    Article  CAS  Google Scholar 

  14. Jiang J, Zhu J, Ai W, Fan Z, Shen X, Zou C, Liu J, Zhang H, Yu T (2014) Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ Sci 7(8):2670–2679. https://doi.org/10.1039/C4EE00602J

    Article  CAS  Google Scholar 

  15. Li X, Li H, Liu T, Hei Y, Hassan M, Zhang S, Lin J, Wang T, Bo X, Wang H-L, Li H, Zhou M (2018) The biomass of ground cherry husks derived carbon nanoplates for electrochemical sensing. Sensors Actuators B Chem 255:3248–3256. https://doi.org/10.1016/j.snb.2017.09.151

    Article  CAS  Google Scholar 

  16. Wang L, Zhang Q, Chen S, Xu F, Chen S, Jia J, Tan H, Hou H, Song Y (2014) Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal Chem 86(3):1414–1421. https://doi.org/10.1021/ac401563m

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Chen L, Meng Y, Xie J, Guo Y, Xiao D (2016) Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J Power Sources 335:20–30. https://doi.org/10.1016/j.jpowsour.2016.08.096

    Article  CAS  Google Scholar 

  18. Liu HJ, Wang XM, Cui WJ, Dou YQ, Zhao DY, Xia YY (2010) Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J Mater Chem 20(20):4223–4230. https://doi.org/10.1039/B925776D

    Article  CAS  Google Scholar 

  19. Yan Y, Yin Y-X, Guo Y-G, Wan L-J (2014) A Sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv Energy Mater 4(8):1301584. https://doi.org/10.1002/aenm.201301584

    Article  CAS  Google Scholar 

  20. Wu LM, Tong DS, Zhao LZ, Yu WH, Zhou CH, Wang H (2014) Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite. Appl Clay Sci 95:74–82. https://doi.org/10.1016/j.clay.2014.03.014

    Article  CAS  Google Scholar 

  21. Tao G, Zhang L, Chen L, Cui X, Hua Z, Wang M, Wang J, Chen Y, Shi J (2015) N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 86:108–117. https://doi.org/10.1016/j.carbon.2014.12.102

    Article  CAS  Google Scholar 

  22. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed Eng 51(46):11496–11500. https://doi.org/10.1002/anie.201206720

    Article  CAS  Google Scholar 

  23. Zhou M, Shang L, Li B, Huang L, Dong S (2008) The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes. Electrochem Commun 10(6):859–863. https://doi.org/10.1016/j.elecom.2008.03.008

    Article  CAS  Google Scholar 

  24. Song Y, Lu X, Yi L, Guo Q, Chen S, Mao L, Hou H, Li W (2015) Nitrogen-doped carbon nanotubes supported by macroporous carbon as an efficient enzymatic biosensing platform for glucose. Anal Chem 88(2):1371–1377. https://doi.org/10.1021/acs.analchem.5b03938

    Article  CAS  PubMed  Google Scholar 

  25. Gau V, Ma SC, Wang H, Tsukuda J, Kibler J, Haake DA (2005) Electrochemical molecular analysis without nucleic acid amplification. Methods 37(1):73–83. https://doi.org/10.1016/j.ymeth.2005.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang J, Zeng Q, Bai S, Wang L (2017) New application of coal in electrochemical sensing. Anal Chem 89(16):8358–8365. https://doi.org/10.1021/acs.analchem.7b01612

    Article  CAS  PubMed  Google Scholar 

  27. Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I (2017) Graphene-ceramic hybrid nanofibers for ultrasensitive electrochemical determination of ascorbic acid. Microchim Acta 184(3):897–905. https://doi.org/10.1007/s00604-017-2085-7

    Article  CAS  Google Scholar 

  28. Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I (2017) Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim Acta 184(12):4603–4610. https://doi.org/10.1007/s00604-017-2510-y

    Article  CAS  Google Scholar 

  29. Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS 2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183(1):257–263. https://doi.org/10.1007/s00604-015-1648-8

    Article  CAS  Google Scholar 

  30. Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183(9):2517–2523. https://doi.org/10.1007/s00604-016-1897-1

    Article  CAS  Google Scholar 

  31. Chen J, Ge J, Zhang L, Li Z, Li J, Sun Y, Qu L (2016) Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchim Acta 183(6):1847–1853. https://doi.org/10.1007/s00604-016-1826-3

    Article  CAS  Google Scholar 

  32. Deng K, Li X, Huang H (2016) A glassy carbon electrode modified with a nickel(II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183(7):2139–2145. https://doi.org/10.1007/s00604-016-1843-2

    Article  CAS  Google Scholar 

  33. Li X, Wang Y, Liu J, Sun M, Bo X, Wang H-L, Zhou M (2017) Amperometric ascorbic acid biosensor based on carbon nanoplatelets derived from ground cherry husks. Electrochem Commun 82:139–144. https://doi.org/10.1016/j.elecom.2017.08.007

    Article  CAS  Google Scholar 

  34. Atta NF, El-Kady MF, Galal A (2010) Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor. Anal Biochem 400(1):78–88. https://doi.org/10.1016/j.ab.2010.01.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supports from the National Natural Science Foundation of China (21605015), the Development Project of Science and Technology of Jilin Province (20170101176JC), the Fundamental Research Funds for the Central Universities (2412017BJ003), the Recruitment Program of Global Youth Experts, the Jilin Provincial Department of Education, the start-up funds from Northeast Normal University, and the Analysis and Testing Center of Northeast Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangjie Bo or Ming Zhou.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, J., Sun, M. et al. Amperometric sensing of ascorbic acid by using a glassy carbon electrode modified with mesoporous carbon nanorods. Microchim Acta 185, 474 (2018). https://doi.org/10.1007/s00604-018-3010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3010-4

Keywords

Navigation