Skip to main content
Log in

A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An amino-functionalized zirconium metal-organic framework was composed with a 3D urea-based porous organic polymer to give a hybrid material termed UiO-66-NH2/urea-POP. The material was characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller surface area measurements. It is shown to be a viable sorbent for solid-phase extraction of uranium from water samples. Parameters such as the pH value of the sample, amount of adsorbent, type and volume of eluent, adsorption and desorption time, and sample volume were optimized. Uranyl ion was quantified by using UV-vis spectrophotometry by using 1-(2-pyridyl-azo)-2-naphthol as the indicator. Figures of merits include (a) a maximum sorption capacity of 278 mg g−1; (b) a detection limit of 0.6 μg L−1; and (c) intra-day and inter-day precisions (for n = 5 at a concentration of 100 μg L−1) of 4.8 and 1.9%, respectively. The sorbent can be recycled, and no significant change was observed in the capacity and repeatability of the sorbent after seven extractions. The high surface area, metal-binding sites, and stability of the sorbent makes it a most viable tool for efficient and fast extraction and removal of uranium.

Schematic of a new porous hybrid solid, referred to as UiO-66-NH2/urea-POP. It combines a zirconium-based metal-organic framework and a urea-based porous organic polymer. It is shown to be a highly efficient sorbent for solid-phase extraction of uranium(VI) prior to its spectrophotometric determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Voß A, (2006) Energy in a Sustainable Development Perspective, in: E. Ehlers, T. Krafft (Eds.) Earth System Science in the Anthropocene, Springer, Berlin, Heidelbergr, pp. 153–166

  2. Brook B W, Alonso A, Meneley D A, Misak J, Blees T, van Erp J B, (2014) Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Mater Technol, 1-2:8–16. https://doi.org/10.1016/j.susmat.2014.11.001

    Article  Google Scholar 

  3. Asic A, Kurtovic-Kozaric A, Besic L, Mehinovic L, Hasic A, Kozaric M, Hukic M, Marjanovic D (2017) Chemical toxicity and radioactivity of depleted uranium: the evidence from in vivo and in vitro studies. Environ Res 156:665–673. https://doi.org/10.1016/j.envres.2017.04.032

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283. https://doi.org/10.1016/j.cej.2013.09.034

    Article  CAS  Google Scholar 

  5. Sarafraz H, Minuchehr A, Alahyarizadeh G, Rahimi Z (2017) Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions. Sci Rep 7:11675–11686. https://doi.org/10.1038/s41598-017-11993-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shengxia Duan YW, Liu X, Shao D, Hayat T, Alsaedi A, Li J (2017) Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatmen. ACS Sustain Chem Eng 5:4073–4085. https://doi.org/10.1021/acssuschemeng.7b00069

    Article  CAS  Google Scholar 

  7. Gao Y, Yuan Y, Ma D, Li L, Li Y, Xu W, Tao W (2014) Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater 453:82–90. https://doi.org/10.1016/j.jnucmat.2014.06.028

    Article  CAS  Google Scholar 

  8. Zhang X, Wang J, Li R, Dai Q, Liu L (2013) Removal of uranium(VI) from aqueous solutions by surface modified magnetic Fe3O4 particles. New J Chem 37:3914–3919. https://doi.org/10.1039/C3NJ00572K

    Article  CAS  Google Scholar 

  9. Duan S, Liu X, Wang Y, Shao D, Alharbi NS, Alsaedi A, Li J (2016) Highly efficient entrapment of U(VI) by using porous magnetic Ni0.6Fe2.4O4 micro-particles as the adsorbent, J. Taiwan Inst. Chem Eng 65:367–377. https://doi.org/10.1016/j.jtice.2016.05.041

    Article  CAS  Google Scholar 

  10. Luo B-C, Yuan L-Y, Chai Z-F, Shi W-Q, Tang Q (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307:269–276. https://doi.org/10.1007/s10967-015-4108-3

    Article  CAS  Google Scholar 

  11. Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J (2017) Interfacial growth of a metal-organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(vi). J Mater Chem A 5:17933–17942. https://doi.org/10.1039/C6TA10022H

    Article  CAS  Google Scholar 

  12. Nazari Serenjeh F, Hashemi P, Naeimi H, Zakerzadeh E, Ghiasvand AR (2016) Spherical agarose-coated magnetic nanoparticles functionalized with a new salen for magnetic solid-phase extraction of uranyl ion. Microchim Acta 183:2449–2455. https://doi.org/10.1007/s00604-016-1882-8

    Article  CAS  Google Scholar 

  13. Oveisi AR, Zhang K, Khorramabadi-zad A, Farha OK, Hupp JT (2015) Stable and catalytically active iron porphyrin-based porous organic polymer: activity as both a redox and Lewis acid catalyst. Sci Rep 5:10621–10629. https://doi.org/10.1038/srep10621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM (2017) The chemistry of metal–organic frameworks for CO2 capture. regeneration and conversion Nat Rev Mater 2:17045. https://doi.org/10.1038/natrevmats.2017.45

    Article  CAS  Google Scholar 

  15. Khajeh M, Sharifirad M, Bohlooli M, Ghaffari-Moghaddam M (2016) Magnetic molecularly imprinted polymers-silver nanoparticle based micro-solid phase extraction for the determination of polycyclic aromatic hydrocarbons in water samples. RSC Adv 6:54702–54708. https://doi.org/10.1039/C6RA08499K

    Article  CAS  Google Scholar 

  16. Azarifar D, Ghorbani-Vaghei R, Daliran S, Oveisi AR (2017) A multifunctional zirconium-based metal–organic framework for the one-pot tandem photooxidative Passerini three-component reaction of alcohols. ChemCatChem 9:1992–2000. https://doi.org/10.1002/cctc.201700169

    Article  CAS  Google Scholar 

  17. Peterson GW, Destefano MR, Garibay SJ, Ploskonka A, McEntee M, Hall M, Karwacki CJ, Hupp JT, Farha OK (2017) Optimizing toxic chemical removal through defect-induced UiO-66-NH2 metal–organic framework. Chem Eur J 23:15913–15916. https://doi.org/10.1002/chem.201704525

    Article  CAS  PubMed  Google Scholar 

  18. Patricia Horcajada RG, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2012) Metal–organic frameworks in biomedicine. Chem Rev 112:1232–1268. https://doi.org/10.1021/cr200256v

    Article  CAS  PubMed  Google Scholar 

  19. Kaur P, Hupp JT, Nguyen ST (2011) Porous organic polymers in catalysis: opportunities and challenges. ACS Catal 1:819–835. https://doi.org/10.1021/cs200131g

    Article  CAS  Google Scholar 

  20. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112:1105–1125. https://doi.org/10.1021/cr200324t

    Article  CAS  PubMed  Google Scholar 

  21. Bai Y, Dou Y, Xie L-H, Rutledge W, Li J-R, Zhou H-C (2016) Zr-based metal-organic frameworks: design, synthesis, structure. and applications Chem Soc Rev 45:2327–2367. https://doi.org/10.1039/C5CS00837A

    Article  CAS  PubMed  Google Scholar 

  22. Pintado-Sierra M, Rasero-Almansa AM, Corma A, Iglesias M, Sánchez F (2013) Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. J Catal 299:137–145. https://doi.org/10.1016/j.jcat.2012.12.004

    Article  CAS  Google Scholar 

  23. Kitao T, Zhang Y, Kitagawa S, Wang B, Uemura T (2017) Hybridization of MOFs and polymers. Chem Soc Rev 46:3108–3133. https://doi.org/10.1039/C7CS00041C

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Q-L, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512. https://doi.org/10.1039/C3CS60472A

    Article  CAS  PubMed  Google Scholar 

  25. Semino R, Moreton JC, Ramsahye NA, Cohen SM, Maurin G (2018) Understanding the origins of metal-organic framework/polymer compatibility. Chem Sci 9:315–324. https://doi.org/10.1039/C7SC04152G

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Chen Z, Zhong H, Wang R (2014) Urea-based porous organic frameworks: effective supports for catalysis in neat water. Chem Eur J 20:3050–3060. https://doi.org/10.1002/chem.201304046

    Article  CAS  PubMed  Google Scholar 

  27. Howarth AJ, Liu Y, Hupp JT, Farha OK (2015) Metal-organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm 17:7245–7253. https://doi.org/10.1039/C5CE01428J

    Article  CAS  Google Scholar 

  28. Rezaei Kahkha MR, Daliran S, Oveisi AR, Kaykhaii M, Sepehri Z (2017) The mesoporous porphyrinic zirconium metal-organic framework for pipette-tip solid-phase extraction of mercury from fish samples followed by cold vapor atomic absorption spectrometric determination. Food Anal Methods 10:2175–2184. https://doi.org/10.1007/s12161-016-0786-x

    Article  Google Scholar 

  29. Feng Y, Jiang H, Li S, Wang J, Jing X, Wang Y, Chen M (2013) Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids surf, a: Physicochem. Eng Asp 431:87–92. https://doi.org/10.1016/j.colsurfa.2013.04.032

    Article  CAS  Google Scholar 

  30. Bai Z-Q, Yuan L-Y, Zhu L, Liu Z-R, Chu S-Q, Zheng L-R, Zhang J, Chai Z-F, Shi W-Q (2015) Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J Mater Chem A 3:525–534. https://doi.org/10.1039/C4TA04878D

    Article  CAS  Google Scholar 

  31. Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113:7728–7768. https://doi.org/10.1021/cr400086v

    Article  CAS  PubMed  Google Scholar 

  32. Ostolska I, Wiśniewska M (2014) Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids. Colloid Polym Sci 292:2453–2464. https://doi.org/10.1007/s00396-014-3276-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moon S-Y, Jeon E, Bae J-S, Byeon M, Park J-W (2014) Polyurea networks via organic sol–gel crosslinking polymerization of tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide. Polym Chem 5:1124–1131. https://doi.org/10.1039/C3PY01593A

    Article  CAS  Google Scholar 

  34. Moon SY, Bae JS, Jeon E, Park JW (2010) Organic sol–gel synthesis: solution-processable microporous organic networks. Angew Chem Int Ed 49:9504–9508. https://doi.org/10.1002/anie.201002609

    Article  CAS  Google Scholar 

  35. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the University of Zabol, Zabol, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Khajeh.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotovat, H., Khajeh, M., Oveisi, A.R. et al. A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI). Microchim Acta 185, 469 (2018). https://doi.org/10.1007/s00604-018-2991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2991-3

Keywords

Navigation