Skip to main content
Log in

Preparation of copper tetra(N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, poly(glycidyl methacrylate-ethyleneglycol dimethacrylate) monolith functionalized with copper tetra(N-carbonylacrylic) aminephthalocyanine and iminodiacetic acid was successfully synthesized. Owing to hydrogen bonding and hydrophilic interactions, the monolith exhibited good performance for glycopeptide enrichment. When the tryptic digests of horseradish peroxidase were enriched by the developed monolith, a total of 20 glycopeptides could be captured and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis with a detection limit as low as 0.5 fmol μL−1. With the mixture of bovine serum albumin and horseradish peroxidase digests (200:1, m/m) as the sample, 14 glycopeptides were identified after enrichment, showing the high selectivity of the monolith. Moreover, the functionalized monolith exhibited good stability and reproducibility. It was successfully applied to enrich glycopeptides from human serum, demonstrating its potential applications in selective and efficient capture of glycopeptides in complex biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nilsson J, Ruetschi U, Halim A, Hesse C, Carlsohn E, Brinkmalm G, et al. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods. 2009;6(11):809–11.

    Article  CAS  PubMed  Google Scholar 

  2. Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395–410.

    Article  CAS  PubMed  Google Scholar 

  3. Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science. 2001;291(5512):2351–6.

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Zhang XM, Deng CH. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev. 2013;42(21):8517–39.

    Article  CAS  PubMed  Google Scholar 

  5. Kuo CW, Wu IL, Hsiao HH, Khoo KH. Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles. Anal Bioanal Chem. 2012;402(9):2765–76.

    Article  CAS  PubMed  Google Scholar 

  6. Wang YL, Liu MB, Xie LQ, Fang CY, Xiong HM, Lu HJ. Highly efficient enrichment method for glycopeptide analyses: using specific and nonspecific nanoparticles synergistically. Anal Chem. 2014;86(4):2057–64.

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, He H. Synthesis and applications of boronate affinity materials: from class selectivity to biomimetic specificity. Acc Chem Res. 2017;50(9):2185–93.

    Article  CAS  PubMed  Google Scholar 

  8. Qu YY, Liu JX, Yang KG, Liang Z, Zhang LH, Zhang YK. Boronic acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment. Chem Eur J. 2012;18(29):9056–62.

    Article  CAS  PubMed  Google Scholar 

  9. Wang HY, Bie ZJ, Lü CC, Liu Z. Magnetic nanoparticles with dendrimer-assisted boronate avidity for the selective enrichment of trace glycoproteins. Chem Sci. 2013;4(11):4298.

    Article  CAS  Google Scholar 

  10. Song E, Zhu R, Hammoud ZT, Mechref Y. LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography. J Proteome Res. 2014;13(11):4808–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He XM, Liang XC, Chen X, Yuan BF, Zhou P, Zhang LN, et al. High strength and hydrophilic chitosan microspheres for the selective enrichment of N-glycopeptides. Anal Chem. 2017;89(18):9712–21.

    Article  CAS  PubMed  Google Scholar 

  12. Selman MH, Hemayatkar M, Deelder AM, Wuhrer M. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem. 2011;83(7):2492–9.

    Article  CAS  PubMed  Google Scholar 

  13. Alagesan K, Khilji SK, Kolarich D. It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem. 2017;409(2):529–38.

    Article  CAS  PubMed  Google Scholar 

  14. Yang F, Mao J, He XW, Chen LX, Zhang YK. Synthesis of boronate-silica hybrid affinity monolith via a one-pot process for specific capture of glycoproteins at neutral conditions. Anal Bioanal Chem. 2013;405(21):6639–48.

    Article  CAS  PubMed  Google Scholar 

  15. Yang F, Mao J, He XW, Chen LX, Zhang YK. Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins. Anal Bioanal Chem. 2013;405(15):5321–31.

    Article  CAS  PubMed  Google Scholar 

  16. Li DJ, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev. 2015;44(22):8097–123.

    Article  CAS  PubMed  Google Scholar 

  17. Lu Y, Bie ZJ, Liu YC, Liu Z. Fine-tuning the specificity of boronate affinity monoliths toward glycoproteins through pH manipulation. Analyst. 2013;138(1):290–8.

    Article  CAS  PubMed  Google Scholar 

  18. Bie ZJ, Chen Y, Li HY, Wu RH, Liu Z. Off-line hyphenation of boronate affinity monolith-based extraction with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for efficient analysis of glycoproteins/glycopeptides. Anal Chim Acta. 2014;834(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng HJ, Ma JT, Feng W, Jia Q. Specific enrichment of glycoproteins with polymer monolith functionalized with glycocluster grafted β-cyclodextrin. J Chromatogr A. 2017;1512:88–97.

    Article  CAS  PubMed  Google Scholar 

  20. Lin H, Ou JJ, Zhang ZB, Dong J, Wu MH, Zou HF. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved “one-pot” approach for hydrophilic-interaction liquid chromatography (HILIC). Anal Chem. 2012;84(6):2721–8.

    Article  CAS  PubMed  Google Scholar 

  21. Elemans JAAW, Hameren R, Nolte RJM, Rowan AE. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv Mater. 2006;18(10):1251–66.

    Article  CAS  Google Scholar 

  22. Bottari G, Torre GDL, Guldi DM, Torres T. Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem Rev. 2010;110(11):6768–816.

    Article  CAS  PubMed  Google Scholar 

  23. Palanisamy UD, Winzor DJ, Lowe CR. Synthesis and evaluation of affinity adsorbents for glycoproteins: an artificial lectin. J Chromatogr B. 2000;746(2):265–81.

    Article  CAS  Google Scholar 

  24. Candiano G, Santucci L, Petretto A, Lavarello C, Inglese E, Bruschi M, et al. Widening and diversifying the proteome capture by combinatorial peptide ligand libraries via Alcian Blue dye binding. Anal Chem. 2015;87(9):4814–20.

    Article  CAS  PubMed  Google Scholar 

  25. Yu CY, Chen S, Quan X, Ou XX, Zhang YB. Separation of phthalocyanine-like substances from humic acids using a molecular imprinting method and their photochemical activity under simulated sunlight irradiation. J Agric Food Chem. 2009;57(15):6927–31.

    Article  CAS  PubMed  Google Scholar 

  26. Pan Y, Chen WX, Lu SF, Zhang YF. Novel aqueous soluble cobalt phthalocyanine: synthesis and catalytic activity on oxidation of 2-mercaptoethanol. Dyes Pigments. 2005;66(2):115–21.

    Article  CAS  Google Scholar 

  27. Sun NR, Wang J, Yao JZ, Deng CH. Hydrophilic mesoporous silica materials for highly specific enrichment of N-linked glycopeptide. Anal Chem. 2017;89(3):1764–71.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang M, Wei F, Zhang YF, Nie J, Feng YQ. Novel polymer monolith microextraction using a poly(methacrylic acid-ethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin II receptor antagonists in human urine by capillary zone electrophoresis. J Chromatogr A. 2006;1102(1–2):294–301.

    Article  CAS  PubMed  Google Scholar 

  29. Bi CF, Zhao YR, Shen LJ, Zhang K, He XW, Chen LX, et al. Click synthesis of hydrophilic maltose-functionalized iron oxide magnetic nanoparticles based on dopamine anchors for highly selective enrichment of glycopeptides. ACS Appl Mater Interfaces. 2015;7(44):24670–8.

    Article  CAS  PubMed  Google Scholar 

  30. Wu RQ, Xie Y, Deng CH. Thiol-ene click synthesis of L-cysteine-bonded zwitterionic hydrophilic magnetic nanoparticles for selective and efficient enrichment of glycopeptides. Talanta. 2016;160:461–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang MY, Shao CL, Guo ZC, Zhang ZY, Mu JB, Cao TP, et al. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl Mater Interfaces. 2011;3(2):369–77.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou CY, Chen XM, Du Z, Li GK, Xiao XH, Cai ZW. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins. J Chromatogr A. 2017;1498:90–8.

    Article  CAS  PubMed  Google Scholar 

  33. Xu DP, Yan GQ, Gao MX, Deng CH, Zhang XM. Selective enrichment of glycopeptides/phosphopeptides using Fe3O4@Au-B(OH)2@mTiO2 core-shell microspheres. Talanta. 2017;166:154–61.

    Article  CAS  PubMed  Google Scholar 

  34. Wang MY, Zhang XM, Deng CH. Facile synthesis of magnetic poly(styrene-co-4-vinylbenzene-boronic acid) microspheres for selective enrichment of glycopeptides. Proteomics. 2015;15(13):2158–65.

    Article  CAS  PubMed  Google Scholar 

  35. Wang YN, Wang JX, Gao MX, Zhang XM. An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. J Mater Chem B. 2015;3(44):8711–6.

    Article  CAS  Google Scholar 

  36. Jiang B, Qu YY, Zhang LH, Liang Z, Zhang YK. 4-Mercaptophenylboronic acid functionalized graphene oxide composites: preparation, characterization and selective enrichment of glycopeptides. Anal Chim Acta. 2016;912:41–8.

    Article  CAS  PubMed  Google Scholar 

  37. Liu QJ, Xie YQ, Deng CH, Li Y. One-step synthesis of carboxyl-functionalized metal-organic framework with binary ligands for highly selective enrichment of N-linked glycopeptides. Talanta. 2017;175:477–82.

    Article  CAS  PubMed  Google Scholar 

  38. Sun HL, Meng FH, Dias AA, Hendriks M, Feijen J, Zhong ZY. Alpha-amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications. Biomacromolecules. 2011;12(6):1937–55.

    Article  CAS  PubMed  Google Scholar 

  39. Sun SH, Hu YW, Jia L, Eshghi ST, Liu Y, Shah P, et al. Site-specific profiling of serum glycoproteins using N-linked glycan and glycosite analysis revealing atypical N-glycosylation sites on albumin and alpha-1b-glycoprotein. Anal Chem. 2018;90(10):6292–9.

    Article  CAS  PubMed  Google Scholar 

  40. Qin HQ, Cheng K, Zhu J, Mao JW, Wang FJ, Dong MM, et al. Proteomics analysis of O-GalNAc glycosylation in human serum by an integrated strategy. Anal Chem. 2017;89(3):1469–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (21575049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Jia.

Ethics declarations

The use of serum samples in this experiment was approved by the Ethics Committee of the First Hospital of Jilin University (Changchun, China).

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all participants in the experiment.

Electronic supplementary material

ESM 1

(PDF 1248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Jiang, L., Wang, D. et al. Preparation of copper tetra(N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides. Anal Bioanal Chem 410, 6653–6661 (2018). https://doi.org/10.1007/s00216-018-1278-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1278-1

Keywords

Navigation