Skip to main content
Log in

A nanosystem composed of upconversion nanoparticles and N, N-diethyl-p-phenylenediamine for fluorimetric determination of ferric ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A system composed of upconversion nanoparticles (UCNPs) and N,N-diethyl-p-phenylenediamine (EPA) is shown to be a useful probe for highly sensitive and selective fluorometric determination of ferric ion. The fluorescence of the UCNPs (under the 980 nm excitation) has peaks at 546, 657, 758 and 812 nm. EPA is readily oxidized by Fe(III) to generate a dye with a peak at 552 nm. This causes an inner filter effect on the fluorescence peaks at 546 nm, whereas the emissions at 657, 758 and 812 nm remained unchanged. Therefore, the iron concentration can be quantified by measurement of the ratio of fluorescence at 546 and 758. Under optimal condition, the ratio drops linearly in the 0.25 to 50 μM. Fe(III) concentration ranges, with a detection limit of 0.25 μM. The method is highly selective and was applied to the analysis of spiked samples (wastewater) where it gave recoveries of between 100.9 and 107.3%; and RSD values between 0.8 and 1.4%. Results are approximately the same as those obtained by AAS.

A method is presented for fluorimetric determination of Fe(III). Fe(III) reacts with N,N-diethyl-p-phenylenediamine (EPA) to generate EPA oxide. The fluorescence peaking at 546 nm is reduced in presence of oxidized EPA via an inner filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jin X, Wu X, Liu L, Wang Z, Xie P, Ma A, Zhou H, Chen W (2017) Dual-functional fluorescein-based Chemosensor for chromogenic detection of Fe3+ and Fluorgenic detection of HOCl. J Fluoresc 27(6):2111–2117

    Article  CAS  PubMed  Google Scholar 

  2. Han Y, Wu X, Zhang X, Zhou Z, Lu C (2016) Dual functional biocomposites based on polydopamine modified cellulose nanocrystal for Fe3+−pollutant detecting and auto-blocking. ACS Sustain Chem Eng 4(10)

  3. Shi B, Su Y, Zhang L L, Huang M, Liu R, Zhao S (2016) Nitrogen and phosphorus Co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl Mater Interfaces 8(17):10717-10725. https://doi.org/10.1021/acsami.6b01325

  4. Wang B, Yang Q, Guo C, Sun Y, Xie L H, Li J R (2017) Stable Zr(IV)-based metal-organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS Appl Mater Interfaces 9(11):10286

  5. Abdelhamid HN, Bermejo-Gómez A, Martín-Matute B, Zou X (2017) A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Mikrochimica Acta 184(9):3363–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen H, Bao X, Shu H, Zhou B, Ye R, Zhu J (2016) Synthesis and evaluation of a novel rhodamine B-based ‘off-on’ fluorescent chemosensor for the selective determination of Fe 3+ ions. Sensors Actuators B Chem 242. https://doi.org/10.1016/j.snb.2016.09.163

  7. Kim K, Nam Y-S, Lee Y, Lee K-B (2017) Highly sensitive colorimetric assay for determining Fe3+ based on gold nanoparticles conjugated with glycol chitosan. J Anal Methods Chem:2017, 3648564

  8. Yang Z, She M, Yin B, Cui J, Zhang Y, Sun W, Li J, Shi Z (2012) Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells. J Org Chem 77(2):1143–1147

    Article  CAS  PubMed  Google Scholar 

  9. Chereddy NR, Thennarasu S, Mandal AB (2012) Incorporation of triazole into a quinoline–rhodamine conjugate imparts iron(III) selective complexation permitting detection at nanomolar levels. Dalton Trans 41(38):11753–11759

  10. Zhou X, Wang Y, Peng Q, Liu W, Resumable Fluorescent A (2017) Probe BHN-Fe3O4@SiO2 hybrid nanostructure for Fe3+ and its application in bioimaging. In: Nanoscale research letters, pp. 629

  11. Lin W, Long L, Yuan L, Cao Z, Feng J (2009) A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore. Anal Chim Acta 634(2):262–266

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Zhang D, Liu Y, Ding P, Wang C, Ye Y, Zhao Y (2014) A N-stablization rhodamine-based fluorescent chemosensor for Fe3+ in aqueous solution and its application in bioimaging. Sensors Actuators B Chem 191:344–350

    Article  CAS  Google Scholar 

  13. Wu Y-X, Zhang X-B, Zhang D-L, Zhang C-C, Li J-B, Wu Y, Song Z-L, Yu R-Q, Tan W (2016) Quench-shield Ratiometric Upconversion luminescence Nanoplatform for biosensing. Anal Chem 88(3):1639–1646

    Article  CAS  PubMed  Google Scholar 

  14. Näreoja T, Deguchi T, Christ S, Peltomaa R, Prabhakar N, Fazeli E, Perälä N, Rosenholm J M, Arppe R, Soukka T (2017) Ratiometric sensing and imaging of intracellular pH using polyethyleneimine-coated photon upconversion nanoprobes. Anal Chem 89(3):1501–1508

  15. Liu Y, Jia Q, Guo Q, Jiang A, Zhou J (2017) In Vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Anal Chem 89(22):12299–12305

  16. Sheng Y, Liao L D, Bandla A, Liu Y H, Thakor N V, Tan M C (2017) Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth doped nanoparticles for infrared photoacoustic imaging. ACS Biomater Sci Eng 2(5).https://doi.org/10.1021/acsbiomaterials.6b00012

  17. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10:968–973

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Brenner T J, Chen Z, Neher D, Antonietti M, Shalom M (2014) Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light. ACS Appl Mater Interfaces6(19):16481

  19. Sun N, Ding Y, Tao Z, You H, Hua X, Wang M (2018) Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation. Food Chem 257:289–294

    Article  CAS  PubMed  Google Scholar 

  20. Hu W, Chen Q, Li H, Ouyang Q, Zhao J (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, ho@SiO2 and au nanoparticles. Biosens Bioelectron 80:398–404

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Ouyang Q, Li H, Zhang Z, Chen Q (2017) Development of an inner filter effects-based Upconversion nanoparticles-curcumin Nanosystem for the sensitive sensing of fluoride ion. ACS Appl Mater Interfaces 9(21):18314–18321

    Article  CAS  PubMed  Google Scholar 

  22. Xu Y, Meng X, Liu J, Dang S, Shi L, Sun L (2016) Luminescent nanoprobes based on upconversion nanoparticles and single-walled carbon nanohorns or graphene oxide for detection of Pb2+ ion. CrystEngComm 18(22):4032–4037

    Article  CAS  Google Scholar 

  23. Li X, Wu Y, Liu Y, Zou X, Yao L, Li F, Feng W (2014) Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water. Nanoscale 6(2):1020–1028

    Article  CAS  PubMed  Google Scholar 

  24. Chen H, Ren J (2012) Sensitive determination of chromium (VI) based on the inner filter effect of upconversion luminescent nanoparticles (NaYF4:Yb3+, Er3+). Talanta 99(18):404–408

    Article  CAS  PubMed  Google Scholar 

  25. Ghaedi M, Mortazavi K, Montazerozohori M, Shokrollahi A, Soylak M (2013) Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761. Mater Sci Eng C 33(4):2338–2344

    Article  CAS  Google Scholar 

  26. Yang Y, Fang D, Liu Y, Liu R, Wang X, Yu Y, Zhi J (2018) Problems analysis and new fabrication strategies of mediated electrochemical biosensors for wastewater toxicity assessment. Biosens Bioelectron 108:82–88

    Article  CAS  PubMed  Google Scholar 

  27. Gomes GVDL, Borrin TR, Cardoso LP, Souto E, Pinho SCD (2013) Characterization and shelf life of β-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. Braz Arch Biol Technol 56(4):663–671

    Article  CAS  Google Scholar 

  28. González-Mira E, Nikolić S, García ML, Egea MA, Souto EB, Calpena AC (2015) Potential use of nanostructured lipid carriers for topical delivery of flurbiprofen. J Pharm Sci 100(1):242–251

    Article  CAS  Google Scholar 

  29. Kaneko F, Yamazaki K, Kitagawa K, Takashi Kikyo A, Kobayashi M, And YK, Matsuura Y, Sato K, Suzuki M (1997) Structure and crystallization behavior of the β phase of oleic acid. J Phys Chem B 101

  30. Tantaru G, Vieriu M, Popescu M-C (2014) Validation of spectrophotometric method for se(IV) determination: analytical applications. Environ Monit Assess 186(5):3277–3282

    Article  CAS  PubMed  Google Scholar 

  31. Long Q, Fang A, Wen Y, Li H, Zhang Y, Yao S (2016) Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect. Biosens Bioelectron 86:109–114

    Article  CAS  PubMed  Google Scholar 

  32. Nadeem S, Shah MR, Khan B, Hoda N, Topel Ö (2013) Supramolecular chemosensor for selective detection of iron in aqueous medium. Supramol Chem 25(12):798–805

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (31772063), the National Key R&D Program of China (2016YFD0401205)and Key R&D Program of Jiangsu Province (BE2017357 and BE2015308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quansheng Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Kutsanedzie, F.Y.H., Cheng, W. et al. A nanosystem composed of upconversion nanoparticles and N, N-diethyl-p-phenylenediamine for fluorimetric determination of ferric ion. Microchim Acta 185, 378 (2018). https://doi.org/10.1007/s00604-018-2902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2902-7

Keywords

Navigation